码迷,mamicode.com
首页 > 编程语言 > 详细

CORDIC逼近算法

时间:2014-11-16 17:18:07      阅读:279      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   color   ar   os   使用   sp   

现在开始学习CORDIC算法

学习的博文:

(1)http://blog.csdn.net/liyuanbhu/article/details/8458769  三角函数计算,Cordic 算法入门

 

 

 

(1)很好的解释了cordic算法的思想。坐标旋转公式。推导http://www.cnblogs.com/ywxgod/archive/2010/08/06/1793609.html

顺时针旋转: x‘ = xcos(θ) + ysin(θ), y‘ = -xsin(θ) + ycos(θ);

逆时针旋转:x‘ = xcos(θ) - ysin(θ), y‘ = xsin(θ) + ycos(θ);

 

知道这个后,要确定(x,y)的极坐标ρ = sqrt(x2+y2 ), θ = arctan(y/x)。其中θ 的求解就是一个要求超函数。在博文中是通过二分查找发。其中逼近的指标是y = 0;到此我估计cordic算法也是一种类似的逼近。

这个二分查找实在是形象。

 

 

使用FPGA实现如下:只使用了5级流水线。其角度精度在26-7.

  1 //*****************************************************************************************
  2 //
  3 // function: achieve the coordinate rotation digital computers 5
  4 //
  5 //
  6 //    corn 2014.11.15
  7 //
  8 //
  9 //*****************************************************************************************
 10 
 11 module    cordic_module(
 12 input        clk, rst_n,
 13 
 14 input        signed [7 : 0]    x0, y0,
 15 
 16 output    reg    signed [7 : 0]    r, syta
 17 
 18 );
 19 
 20 parameter    WIDTH = 8;
 21 
 22 
 23 reg    signed     [WIDTH - 1 : 0]    x0_r, x1_r, x2_r, x3_r, x4_r;
 24 reg    signed    [WIDTH - 1 : 0]    y0_r, y1_r, y2_r, y3_r, y4_r;
 25 reg    signed    [WIDTH - 1 : 0]    syta0_r, syta1_r, syta2_r, syta3_r, syta4_r;
 26 
 27 
 28 always @(posedge clk or negedge rst_n)    begin
 29     if(!rst_n)    begin
 30         syta0_r <= 0;
 31     end
 32     else    begin
 33     //first stage----------------------------------------------------------
 34         if(x0 >= 0)    begin        //in the first sector or forth sector
 35             x0_r <= x0;
 36             y0_r <= y0;
 37             syta0_r <= 0;
 38         end
 39         else    if(y0 >= 0)    begin    //in the second sector
 40             x0_r <= y0;
 41             y0_r <= -x0;
 42             syta0_r <= 90;
 43         end
 44         else    begin                    //in the third sector
 45             x0_r <= -y0;
 46             y0_r <= x0;
 47             syta0_r <= -90;
 48         end
 49     //second stage arctan(1)------------------------------------------------------- 
 50         if(y0_r >= 0)    begin
 51             x1_r <= x0_r + y0_r;
 52             y1_r <= y0_r - x0_r;
 53             syta1_r <= syta0_r + 45;
 54         end
 55         else    begin
 56             x1_r <= x0_r - y0_r;
 57             y1_r <= y0_r + x0_r;
 58             syta1_r <= syta0_r - 45;
 59         end
 60     //third stage arctan(2)---------------------------------------------------------
 61         if(y1_r >= 0)    begin
 62             x2_r <= x1_r + y1_r / 2;
 63             y2_r <= y1_r - x1_r / 2;
 64             syta2_r <= syta1_r + 26;
 65         end
 66         else    begin
 67             x2_r <= x1_r - y1_r / 2;
 68             y2_r <= y1_r + x1_r / 2;
 69             syta2_r <= syta1_r - 26;
 70         end
 71     //forth stage arctan(4)---------------------------------------------------------
 72         if(y2_r >= 0)    begin
 73             x3_r <= x2_r + y2_r / 4;
 74             y3_r <= y2_r - x2_r / 4;
 75             syta3_r <= syta2_r + 14;
 76         end
 77         else    begin
 78             x3_r <= x2_r - y2_r / 4;
 79             y3_r <= y2_r + x2_r / 4;
 80             syta3_r <= syta2_r - 14;
 81         end
 82     //fiveth stage arctan(8)---------------------------------------------------------
 83         if(y3_r >= 0)    begin
 84             x4_r <= x3_r + y3_r / 8;
 85             y4_r <= y3_r - x3_r / 8;
 86             syta4_r <= syta3_r + 7;
 87         end
 88         else    begin
 89             x4_r <= x3_r - y3_r / 8;
 90             y4_r <= y3_r + x3_r / 8;
 91             syta4_r <= syta3_r - 7;
 92         end
 93     
 94     //output
 95         r <= x4_r;
 96         syta <= syta4_r;
 97     end
 98 
 99 
100 
101 end    //always
102 //
103 
104 
105 
106 endmodule

  仿真结果:

bubuko.com,布布扣

 其中使用了三组数据:(-41, 55),(4, -4),(3, 3)

使用计算机的结果:(68.6,-53), (5.6, -45) (4.2, 45)

仿真结果:    (112,-126),(9, -40),(6, 50)其中(-126)180 = -54

结论: 半径有所增加,角度有一定的误差误差范围在27-7。在角度的时候有一定的误差。如果要增加精度,就增加迭代的次数。

CORDIC逼近算法

标签:style   blog   http   io   color   ar   os   使用   sp   

原文地址:http://www.cnblogs.com/cornhill/p/4098123.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!