码迷,mamicode.com
首页 > 编程语言 > 详细

Logistic回归 python实现

时间:2014-11-24 00:49:02      阅读:575      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   io   ar   color   os   sp   for   

Logistic回归

算法优缺点:


1.计算代价不高,易于理解和实现
2.容易欠拟合,分类精度可能不高
3.适用数据类型:数值型和标称型

算法思想:

  • 其实就我的理解来说,logistic回归实际上就是加了个sigmoid函数的线性回归,这个sigmoid函数的好处就在于,将结果归到了0到1这个区间里面了,并且sigmoid(0)=0.5,也就是说里面的线性部分的结果大于零小于零就可以直接计算到了。这里的求解方式是梯度上升法,具体我就不扯了,最推荐的资料还是Ng的视频,那里面的梯度下降就是啦,只不过一个是梯度上升的方向一个是下降的方向,做法什么的都一样。
  • 而梯度上升(准确的说叫做“批梯度上升”)的一个缺点就是计算量太大了,每一次迭代都需要把所有的数据算一遍,这样一旦训练集大了之后,那么计算量将非常大,所以这里后面还提出了随机梯度下降,思想就是每次只是根据一个data进行修正。这样得到的最终的结果可能会有所偏差但是速度却提高了很多,而且优化之后的偏差还是很小的。随机梯度上升的另一个好处是这是一个在线算法,可以根据新数据的到来不断处理

函数:

loadDataSet()
创建数据集,这里的数据集就是在一个文件中,这里面有三行,分别是两个特征和一个标签,但是我们在读出的时候还加了X0这个属性
sigmoid(inX)
sigmoid函数的计算,这个函数长这样的,基本坐标大点就和阶跃函数很像了

bubuko.com,布布扣
gradAscend(dataMatIn, classLabels)
梯度上升算法的实现,里面用到了numpy的数组,并且设定了迭代次数500次,然后为了计算速度都采取了矩阵计算,计算的过程中的公式大概是:w= w+alpha*(y-h)x[i](一直懒得写公式,见谅。。。)
gradAscendWithDraw(dataMatIn, classLabels)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线
stocGradAscent0(dataMatrix, classLabels)
这里为了加快速度用来随机梯度上升,即每次根据一组数据调整(额,好吧,这个际没有随机因为那是线面那个函数)
stocGradAscentWithDraw0(dataMatrix, classLabels)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线
stocGradAscent1(dataMatrix, classLabels, numIter=150)
这就真的开始随机了,随机的主要好处是减少了周期性的波动了。另外这里还加入了alpha的值随迭代变化,这样可以让alpha的值不断的变化,但是都不会减小到0。
stocGradAscentWithDraw1(dataMatrix, classLabels, numIter=150)
上面的函数加强版,增加了一个weight跟着迭代次数的变化曲线
plotBestFit(wei)
根据计算的weight值画出拟合的线,直观观察效果

运行效果分析:
1、梯度上升:
迭代变化趋势
bubuko.com,布布扣
分类结果:
bubuko.com,布布扣
2、随机梯度上升版本1
迭代变化趋势
bubuko.com,布布扣
分类结果:
bubuko.com,布布扣
这个速度虽然快了很多但是效果不太理想啊。不过这个计算量那么少,我们如果把这个迭代200次肯定不一样了,效果如下
bubuko.com,布布扣
bubuko.com,布布扣
果然好多了
3、随机梯度上升版本2
迭代变化趋势
bubuko.com,布布扣
分类结果:
bubuko.com,布布扣
恩,就是这样啦,效果还是不错的啦。代码的画图部分写的有点烂,见谅啦
  1.   1 #coding=utf-8
      2 from numpy import *
      3 
      4 def loadDataSet():
      5     dataMat = []
      6     labelMat = []
      7     fr = open(testSet.txt)
      8     for line in fr.readlines():
      9         lineArr = line.strip().split()
     10         dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
     11         labelMat.append(int(lineArr[2]))
     12     return dataMat, labelMat
     13     
     14 def sigmoid(inX):
     15     return 1.0/(1+exp(-inX))
     16     
     17 def gradAscend(dataMatIn, classLabels):
     18     dataMatrix = mat(dataMatIn)
     19     labelMat = mat(classLabels).transpose()
     20     m,n = shape(dataMatrix)
     21     alpha = 0.001
     22     maxCycle = 500
     23     weight = ones((n,1))
     24     for k in range(maxCycle):
     25         h = sigmoid(dataMatrix*weight)
     26         error = labelMat - h
     27         weight += alpha * dataMatrix.transpose() * error
     28         #plotBestFit(weight)
     29     return weight
     30 
     31 def gradAscendWithDraw(dataMatIn, classLabels):
     32     import matplotlib.pyplot as plt
     33     fig = plt.figure()
     34     ax = fig.add_subplot(311,ylabel=x0)
     35     bx = fig.add_subplot(312,ylabel=x1)
     36     cx = fig.add_subplot(313,ylabel=x2)
     37     dataMatrix = mat(dataMatIn)
     38     labelMat = mat(classLabels).transpose()
     39     m,n = shape(dataMatrix)
     40     alpha = 0.001
     41     maxCycle = 500
     42     weight = ones((n,1))
     43     wei1 = []
     44     wei2 = []
     45     wei3 = []
     46     for k in range(maxCycle):
     47         h = sigmoid(dataMatrix*weight)
     48         error = labelMat - h
     49         weight += alpha * dataMatrix.transpose() * error
     50         wei1.extend(weight[0])
     51         wei2.extend(weight[1])
     52         wei3.extend(weight[2])
     53     ax.plot(range(maxCycle), wei1)
     54     bx.plot(range(maxCycle), wei2)
     55     cx.plot(range(maxCycle), wei3)
     56     plt.xlabel(iter_num)
     57     plt.show()
     58     return weight
     59     
     60 def stocGradAscent0(dataMatrix, classLabels):
     61     m,n = shape(dataMatrix)
     62     
     63     alpha = 0.001
     64     weight = ones(n)
     65     for i in range(m):
     66         h = sigmoid(sum(dataMatrix[i]*weight))
     67         error = classLabels[i] - h
     68         weight = weight + alpha * error * dataMatrix[i]
     69     return weight
     70     
     71 def stocGradAscentWithDraw0(dataMatrix, classLabels):
     72     import matplotlib.pyplot as plt
     73     fig = plt.figure()
     74     ax = fig.add_subplot(311,ylabel=x0)
     75     bx = fig.add_subplot(312,ylabel=x1)
     76     cx = fig.add_subplot(313,ylabel=x2)
     77     m,n = shape(dataMatrix)
     78     
     79     alpha = 0.001
     80     weight = ones(n)
     81     wei1 = array([])
     82     wei2 = array([])
     83     wei3 = array([])
     84     numIter = 200
     85     for j in range(numIter):
     86         for i in range(m):
     87             h = sigmoid(sum(dataMatrix[i]*weight))
     88             error = classLabels[i] - h
     89             weight = weight + alpha * error * dataMatrix[i]
     90             wei1 =append(wei1, weight[0])
     91             wei2 =append(wei2, weight[1])
     92             wei3 =append(wei3, weight[2])
     93     ax.plot(array(range(m*numIter)), wei1)
     94     bx.plot(array(range(m*numIter)), wei2)
     95     cx.plot(array(range(m*numIter)), wei3)
     96     plt.xlabel(iter_num)
     97     plt.show()
     98     return weight
     99     
    100 def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    101     m,n = shape(dataMatrix)
    102     
    103     #alpha = 0.001
    104     weight = ones(n)
    105     for j in range(numIter):
    106         dataIndex = range(m)
    107         for i in range(m):
    108             alpha = 4/ (1.0+j+i) +0.01
    109             randIndex = int(random.uniform(0,len(dataIndex)))
    110             h = sigmoid(sum(dataMatrix[randIndex]*weight))
    111             error = classLabels[randIndex] - h
    112             weight = weight + alpha * error * dataMatrix[randIndex]
    113             del(dataIndex[randIndex])
    114     return weight
    115     
    116 def stocGradAscentWithDraw1(dataMatrix, classLabels, numIter=150):
    117     import matplotlib.pyplot as plt
    118     fig = plt.figure()
    119     ax = fig.add_subplot(311,ylabel=x0)
    120     bx = fig.add_subplot(312,ylabel=x1)
    121     cx = fig.add_subplot(313,ylabel=x2)
    122     m,n = shape(dataMatrix)
    123     
    124     #alpha = 0.001
    125     weight = ones(n)
    126     wei1 = array([])
    127     wei2 = array([])
    128     wei3 = array([])
    129     for j in range(numIter):
    130         dataIndex = range(m)
    131         for i in range(m):
    132             alpha = 4/ (1.0+j+i) +0.01
    133             randIndex = int(random.uniform(0,len(dataIndex)))
    134             h = sigmoid(sum(dataMatrix[randIndex]*weight))
    135             error = classLabels[randIndex] - h
    136             weight = weight + alpha * error * dataMatrix[randIndex]
    137             del(dataIndex[randIndex])
    138             wei1 =append(wei1, weight[0])
    139             wei2 =append(wei2, weight[1])
    140             wei3 =append(wei3, weight[2])
    141     ax.plot(array(range(len(wei1))), wei1)
    142     bx.plot(array(range(len(wei2))), wei2)
    143     cx.plot(array(range(len(wei2))), wei3)
    144     plt.xlabel(iter_num)
    145     plt.show()
    146     return weight
    147     
    148 def plotBestFit(wei):
    149     import matplotlib.pyplot as plt
    150     weight = wei
    151     dataMat,labelMat = loadDataSet()
    152     dataArr = array(dataMat)
    153     n = shape(dataArr)[0]
    154     xcord1 = []
    155     ycord1 = []
    156     xcord2 = []
    157     ycord2 = []
    158     for i in range(n):
    159         if int(labelMat[i]) == 1:
    160             xcord1.append(dataArr[i,1])
    161             ycord1.append(dataArr[i,2])
    162         else:
    163             xcord2.append(dataArr[i,1])
    164             ycord2.append(dataArr[i,2])
    165     fig = plt.figure()
    166     ax = fig.add_subplot(111)
    167     ax.scatter(xcord1, ycord1, s=30, c=red, marker=s)
    168     ax.scatter(xcord2, ycord2, s=30, c=green)
    169     x = arange(-3.0, 3.0, 0.1)
    170     y = (-weight[0] - weight[1]*x)/weight[2]
    171     ax.plot(x,y)
    172     plt.xlabel(X1)
    173     plt.ylabel(X2)
    174     plt.show()
    175     
    176 def main():
    177     dataArr,labelMat = loadDataSet()
    178     #w = gradAscendWithDraw(dataArr,labelMat)
    179     w = stocGradAscentWithDraw0(array(dataArr),labelMat)
    180     plotBestFit(w)
    181     
    182 if __name__ == __main__:
    183     main()

     



Logistic回归 python实现

标签:style   blog   http   io   ar   color   os   sp   for   

原文地址:http://www.cnblogs.com/MrLJC/p/4117805.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!