Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
本题通过分析可以发现,存储水的槽的两边都是槽高的极大值。(这里对于最左边的曹,只要大于等于它右面的即可。最右边的同理)
但是单纯的考量 每两个极大值的槽作为水槽的两边得到的结果是不对的。举个例子:
A = {9,2, 9, 2,2,1,8}
这里如果只考虑每两个极大值之间存放的水,结果是7+0+1 = 8. 而实际上最大的结果应该是7+6+6+7 = 26.
所以,以没有计算过的最左的槽为左槽,找到符合以下条件之一的槽为右槽:
(PS:此题我写了好久。。。 总是有地方出错。 后来发现是局部极大值和局部极大值的位置搞错了-.-|| )
int trap(int A[], int n) { //C++ if(n < 3) return 0; vector<int> locmaxs; int sum = 0; int i = 0; while(i < n) { if(i == 0 && A[0] >= A[1]) { locmaxs.push_back(0); i++; } else if(i == n-1 && A[n-1] >= A[n-2]) { locmaxs.push_back(n-1); i++; } else if(A[i] >= A[i-1] && A[i] >= A[i+1]) { locmaxs.push_back(i); i++; } else i++; } for(i = 0; i < locmaxs.size()-1; ) { int pos = i+1 ,max = locmaxs[i+1]; for( int j = i+1; j < locmaxs.size(); j++) { if(A[locmaxs[j]] >= A[locmaxs[i]]) { pos = j; break; } if(A[locmaxs[j]] > A[max]) { max = locmaxs[j]; pos = j; } } int draw = ((A[locmaxs[i]] > A[locmaxs[pos]]) ? A[locmaxs[pos]]: A[locmaxs[i]]); for(int j = locmaxs[i]+1; j < locmaxs[pos]; j++) if(draw - A[j] >0) sum += draw - A[j]; i = pos; } return sum; }
原文地址:http://blog.csdn.net/chenlei0630/article/details/41450437