标签:hadoop mapreduce 打成jar包 mapreduce运行时参数指定 mapredece
Hadoop读书笔记(一)Hadoop介绍:http://blog.csdn.net/caicongyang/article/details/39898629
Hadoop读书笔记(二)HDFS的shell操作:http://blog.csdn.net/caicongyang/article/details/41253927
Hadoop读书笔记(三)Java API操作HDFS:http://blog.csdn.net/caicongyang/article/details/41290955
Hadoop读书笔记(四)HDFS体系结构 :http://blog.csdn.net/caicongyang/article/details/41322649
Hadoop读书笔记(五)MapReduce统计单词demo:http://blog.csdn.net/caicongyang/article/details/41453579
Hadoop读书笔记(六)MapReduce自定义数据类型demo:http://blog.csdn.net/caicongyang/article/details/41490379
Hadoop读书笔记(七)MapReduce
0.x版本API使用demo:http://blog.csdn.net/caicongyang/article/details/41493325
KpiApp.java
package cmd; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** * * <p> * Title: KpiApp.java * Package mapReduce * </p> * <p> * Description: 统计流量 (打包jar命令行运行) :extends Configured implements Tool * <p> * @author Tom.Cai * @created 2014-11-25 下午10:23:33 * @version V1.0 * */ public class KpiApp extends Configured implements Tool{ public static void main(String[] args) throws Exception { ToolRunner.run(new KpiApp(), args); } @Override public int run(String[] arg0) throws Exception { String INPUT_PATH = arg0[0]; String OUT_PATH = arg0[1]; FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), new Configuration()); Path outPath = new Path(OUT_PATH); if (fileSystem.exists(outPath)) { fileSystem.delete(outPath, true); } Job job = new Job(new Configuration(), KpiApp.class.getSimpleName()); FileInputFormat.setInputPaths(job, INPUT_PATH); job.setInputFormatClass(TextInputFormat.class); job.setMapperClass(KpiMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(KpiWite.class); job.setPartitionerClass(HashPartitioner.class); job.setNumReduceTasks(1); job.setReducerClass(KpiReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(KpiWite.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.setOutputFormatClass(TextOutputFormat.class); job.waitForCompletion(true); return 0; } static class KpiMapper extends Mapper<LongWritable, Text, Text, KpiWite> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] splited = value.toString().split("\t"); String num = splited[1]; KpiWite kpi = new KpiWite(splited[6], splited[7], splited[8], splited[9]); context.write(new Text(num), kpi); } } static class KpiReducer extends Reducer<Text, KpiWite, Text, KpiWite> { @Override protected void reduce(Text key, Iterable<KpiWite> value, Context context) throws IOException, InterruptedException { long upPackNum = 0L; long downPackNum = 0L; long upPayLoad = 0L; long downPayLoad = 0L; for (KpiWite kpi : value) { upPackNum += kpi.upPackNum; downPackNum += kpi.downPackNum; upPayLoad += kpi.upPayLoad; downPayLoad += kpi.downPayLoad; } context.write(key, new KpiWite(String.valueOf(upPackNum), String.valueOf(downPackNum), String.valueOf(upPayLoad), String.valueOf(downPayLoad))); } } } class KpiWite implements Writable { long upPackNum; long downPackNum; long upPayLoad; long downPayLoad; public KpiWite() { } public KpiWite(String upPackNum, String downPackNum, String upPayLoad, String downPayLoad) { this.upPackNum = Long.parseLong(upPackNum); this.downPackNum = Long.parseLong(downPackNum); this.upPayLoad = Long.parseLong(upPayLoad); this.downPayLoad = Long.parseLong(downPayLoad); } @Override public void readFields(DataInput in) throws IOException { this.upPackNum = in.readLong(); this.downPackNum = in.readLong(); this.upPayLoad = in.readLong(); this.downPayLoad = in.readLong(); } @Override public void write(DataOutput out) throws IOException { out.writeLong(upPackNum); out.writeLong(downPackNum); out.writeLong(upPayLoad); out.writeLong(downPayLoad); } }
通过Eclipse的Export将上述的类打成kpi.jar
将jar包上传到Linux下通过 hadoop jar xxx.jar [parameter] [parameter]命令执行即可
例如:hadoop jar kpi.jar hdfs://192.168.80.100:9000/wlan hdfs://192.168.80.100:9000/wlan_out
即将上篇的代码完成改造可以在命令行下运行!
欢迎大家一起讨论学习!
有用的自己收!
记录与分享,让你我共成长!欢迎查看我的其他博客;我的博客地址:http://blog.csdn.net/caicongyang
Hadoop读书笔记(八)MapReduce 打成jar包demo
标签:hadoop mapreduce 打成jar包 mapreduce运行时参数指定 mapredece
原文地址:http://blog.csdn.net/caicongyang/article/details/41522323