码迷,mamicode.com
首页 > 移动开发 > 详细

Android架构分析之Android消息处理机制(二)

时间:2014-05-20 13:58:34      阅读:459      评论:0      收藏:0      [点我收藏+]

标签:android   消息处理机制   

作者:刘昊昱 

博客:http://blog.csdn.net/liuhaoyutz

Android版本:4.4.2

 

在上一篇文章中我们看了一个使用Handler处理Message消息的例子,本文我们来分析一下其背后隐藏的Android消息处理机制。

我们可能比较熟悉Windows操作系统的消息处理模型:

while(GetMessage(&msg,NULL, 0, 0))
{
       TranslateMessage(&msg);
       DispatchMessage(&msg);
}


1、消息被投递到消息队列中。

2、应用程序在消息处理循环中调用GetMessage函数从消息队列中取出消息(直到取得WM_QUIT消息,才会退出消息处理循环)。

3、调用TranslateMessage函数对消息进行必要的处理,例如放弃对某些消息的响应。

4、调用DispatchMessage函数将消息分配给对应对象处理。

Android作为图形化的操作系统,其消息处理机制与Windows是类似的,同样有一个消息处理循环从消息队列中取出消息,然后将消息发送给相应的对象处理。

在Android系统中,消息处理循环对应的类是Looper,消息对应的类是Message,消息队列对应的类是MessageQueue,消息的处理和分发是通过Handler类完成的。

首先我们来分析Looper,该类定义在frameworks/base/core/java/android/os/Looper.java文件中。

Android文档对Looper类的说明如下:

Class used to run amessage loop for a thread. Threads by default do not have a message loopassociated with them; to create one, call prepare() inthe thread that is to run the loop, and then loop() tohave it process messages until the loop is stopped.

Most interaction with amessage loop is through the Handler class.

This is a typicalexample of the implementation of a Looper thread, using the separation of prepare() and loop() tocreate an initial Handler to communicate with the Looper.

  class LooperThread extends Thread {
      public Handler mHandler;

      public void run() {
          Looper.prepare();

          mHandler = new Handler() {
              public void handleMessage(Message msg) {
                  // process incoming messages here
              }
          };

          Looper.loop();
      }
  }

从上面Android文档对Looper类的说明中可以看到,对于一个线程,要创建消息处理循环,需要调用Looper.prepare()函数和Looper.loop()函数。其中,Looper.prepare()完成必要的初始化工作,Looper.loop()完成循环取消息,分发消息的工作。

先来看Looper.prepare()函数。

71     /** Initialize the current thread as alooper.
 72     * This gives you a chance to create handlers that then reference
 73     * this looper, before actually starting the loop. Be sure to call
 74     * {@link #loop()} after calling this method, and end it by calling
 75     * {@link #quit()}.
 76     */
 77   public static void prepare() {
 78       prepare(true);
 79    }
 80
 81   private static void prepare(boolean quitAllowed) {
 82       if (sThreadLocal.get() != null) {
 83           throw new RuntimeException("Only one Looper may be created perthread");
 84       }
 85       sThreadLocal.set(new Looper(quitAllowed));
 86    }


78行,调用prepare(true),参数true表示允许该Looper退出循环。UI线程也有Looper,而UI线程的Looper是不允许退出的。

82行和85行分别调用了sThreadLocal的get和set成员函数。首先我们来看sThreadLocal的定义:

58    static final ThreadLocal<Looper>sThreadLocal = new ThreadLocal<Looper>();

可见,sThreadLocal是模板类ThreadLocal的实例化对象。ThreadLocal<T>模板类定义在libcore/luni/src/main/java/java/lang/ThreadLocal.java文件中。

我们来看Android文档对ThreadLocal模板类的说明:

Implements a thread-local storage, that is, a variable forwhich each thread has its own value. All threads share the same ThreadLocal object, buteach sees a different value when accessing it, and changes made by one threaddo not affect the other threads. The implementation supports null values.

ThreadLocal对象实现了线程的私有数据存储,其中保存的数据只有本线程自己可以访问,其它线程无法操作。ThreadLocal.set(T)设置了其中保存的数据为T。ThreadLocal.get()取得其中保存的数据。

这样我们就可以理解prepare函数了。82行,如果sThreadLocal.get()返回值不为null,说明该线程已经有一个Looper了,每个线程只允许有一个Looper,所以抛出一个异常退出。如果该线程还没有Looper,则执行85行,调用sThreadLocal.set(newLooper(quitAllowed)),new一个Looper,保存在sThreadLocal中。这样,通过调用prepare函数,就为该线程创建一个Looper对象。

还有一点需要说明的是,调用new Looper(quitAllowed)时,会创建该线程的消息队列,来看Looper的构造函数:

220    private Looper(boolean quitAllowed) {
221        mQueue = new MessageQueue(quitAllowed);
222        mThread = Thread.currentThread();
223    }


221行,new一个MessageQueue保存在mQueue变量中,即该线程的消息队列。

223行,取得当前线程保存在mThread变量中。

这样,再总结一次,通过调用Looper.prepare()函数,我们就为本线程创建了Looper,同时也创建了MessageQueue。

 

分析完Looper.prepare()函数,我们再来看Looper.loop()函数:

112    /**
113     * Run the message queue in this thread. Besure to call
114     * {@link #quit()} to end the loop.
115     */
116    public static void loop() {
117        final Looper me = myLooper();
118        if (me == null) {
119            throw new RuntimeException("NoLooper; Looper.prepare() wasn‘t called on this thread.");
120        }
121        final MessageQueue queue = me.mQueue;
122
123        // Make sure the identity of thisthread is that of the local process,
124        // and keep track of what that identitytoken actually is.
125        Binder.clearCallingIdentity();
126        final long ident =Binder.clearCallingIdentity();
127        LocalLog localLog = me.mLocalLog;
128        if (localLog != null) me.mStringBuilder= new StringBuilder();
129
130        for (;;) {
131            Message msg = queue.next(); //might block
132            if (msg == null) {
133                // No message indicates thatthe message queue is quitting.
134                return;
135            }
136
137            long dispatchStart = 0;
138            // This must be in a localvariable, in case a UI event sets the logger
139            Printer logging = me.mLogging;
140            if (logging != null) {
141               logging.println(">>>>> Dispatching to " +msg.target + " " +
142                        msg.callback + ":" + msg.what);
143            }
144            if (localLog != null) {
145                me.mDispatching =msg.toStringLw();
146                me.mDispatchStart =SystemClock.uptimeMillis();
147            }
148
149            msg.target.dispatchMessage(msg);
150
151            if (logging != null) {
152               logging.println("<<<<< Finished to " +msg.target + " " + msg.callback);
153            }
154            if (localLog != null) {
155                final long elapsed =SystemClock.uptimeMillis() - me.mDispatchStart;
156                final long wait =me.mDispatchStart - msg.when;
157                me.mStringBuilder.setLength(0);
158                if (elapsed >=LATENCY_THRESHOLD) {
159                   me.mStringBuilder.append("WARNING! ");
160                }
161               me.mStringBuilder.append("Wait: ")
162                                 .append(wait)
163                                .append("ms, Run: ")
164                                .append(elapsed)
165                                 .append("ms due Message")
166                                .append(me.mDispatching);
167               localLog.log(me.mStringBuilder.toString());
168                me.mDispatching = null;
169            }
170
171            // Make sure that during the courseof dispatching the
172            // identity of the thread wasn‘tcorrupted.
173            final long newIdent =Binder.clearCallingIdentity();
174            if (ident != newIdent) {
175                Log.wtf(TAG, "Threadidentity changed from 0x"
176                        +Long.toHexString(ident) + " to 0x"
177                        +Long.toHexString(newIdent) + " while dispatching to "
178                        +msg.target.getClass().getName() + " "
179                        + msg.callback + "what=" + msg.what);
180            }
181            msg.recycle();
182        }
183    }


117-127行,准备工作,取得本线程的Looper和MessageQueue等元素。

130-182行,这个for循环即完成循环取出消息,分发消息的工作。

131行,调用MessageQueue.next()函数,从MessageQueue中取得一个Message。MessageQueue.next()函数可能会阻塞,其返回值只有两种可能,一是返回取得的Message,或者返回null。如果返回null,表示退出消息循环。

149行,调用msg.target.dispatchMessage(msg);完成消息的分发。

Message.target是Handler对象,所以149行,就是调用Message对应的Handler对象的dispatchMessage函数。现在问题是Message对应的Handler是怎样指定的。

回忆一下上一篇文章《Android架构分析之Android消息理机制(一)》,我们发送一个Message的过程是先new一个Message,然后调用Handler.sendMessage函数将Message插入本线程消息队列的尾部。过程很简单,所以,我们有理由相信,很可能是在Handler.sendMessage函数中,为Message.target指定了对应的Handler。

在分析Handler之前,我们要再次理解Android的消息处理流程:

1、      Handler通过Handler.sendMessage函数,将Message发送到本线程的MessageQueue中。

2、      本线程的Looper不断循环读取本线程的MessageQueue,从中取出下一条Message,然后调用Message.target.dispatchMessage函数,将消息发送到对应的处理函数。而其中一个可能的处理函数就是Handler.handleMessage,应用程序一般会重载实现这个函数。

 

下面我们来看Handler的实现,其类定义在frameworks/base/core/java/android/os/Handler.java文件中。

首先我们来看Android对Handler的说明:

A Handler allows you tosend and process Message andRunnable objects associated with a thread‘s MessageQueue. EachHandler instance is associated with a single thread and that thread‘s messagequeue. When you create a new Handler, it is bound to the thread / message queueof the thread that is creating it -- from that point on, it will delivermessages and runnables to that message queue and execute them as they come outof the message queue.

There are two main usesfor a Handler: (1) to schedule messages and runnables to be executed as somepoint in the future; and (2) to enqueue an action to be performed on adifferent thread than your own.

Scheduling messages isaccomplished with the post(Runnable)postAtTime(Runnable, long)postDelayed(Runnable, long)sendEmptyMessage(int),sendMessage(Message)sendMessageAtTime(Message, long),and sendMessageDelayed(Message, long) methods.The post versionsallow you to enqueue Runnable objects to be called by the message queue when theyare received; the sendMessage versions allow you to enqueue a Message objectcontaining a bundle of data that will be processed by the Handler‘s handleMessage(Message) method(requiring that you implement a subclass of Handler).

When posting or sendingto a Handler, you can either allow the item to be processed as soon as themessage queue is ready to do so, or specify a delay before it gets processed orabsolute time for it to be processed. The latter two allow you to implementtimeouts, ticks, and other timing-based behavior.

When a process iscreated for your application, its main thread is dedicated to running a messagequeue that takes care of managing the top-level application objects(activities, broadcast receivers, etc) and any windows they create. You cancreate your own threads, and communicate back with the main application threadthrough a Handler. This is done by calling the same post or sendMessage methods as before, but from your newthread. The given Runnable or Message will then be scheduled in the Handler‘smessage queue and processed when appropriate.

可以看到,Handler用来将Message插入到MessageQueue中,同时在适当的时候(即从MessageQueue中取出Message时),Handler也用来对消息进行处理。

Handler提供了多个函数用于将Message插入到MessageQueue中,我们以sendMessage为例,该函数定义如下:

492    /**
493     * Pushes a message onto the end of themessage queue after all pending messages
494     * before the current time. It will bereceived in {@link #handleMessage},
495     * in the thread attached to this handler.
496     *
497     * @return Returns true if the message wassuccessfully placed in to the
498     *        message queue.  Returns false onfailure, usually because the
499     *        looper processing the message queue is exiting.
500     */
501    public final boolean sendMessage(Messagemsg)
502    {
503        return sendMessageDelayed(msg, 0);
504    }


实际上调用的是sendMessageDelayed函数,该函数定义如下:

549    /**
550     * Enqueue a message into the message queueafter all pending messages
551     * before (current time + delayMillis). Youwill receive it in
552     * {@link #handleMessage}, in the threadattached to this handler.
553     *
554     * @return Returns true if the message wassuccessfully placed in to the
555     *        message queue.  Returns false onfailure, usually because the
556     *        looper processing the message queue is exiting.  Note that a
557     *        result of true does not mean the message will be processed -- if
558     *        the looper is quit before the delivery time of the message
559     *        occurs then the message will be dropped.
560     */
561    public final booleansendMessageDelayed(Message msg, long delayMillis)
562    {
563        if (delayMillis < 0) {
564            delayMillis = 0;
565        }
566        return sendMessageAtTime(msg,SystemClock.uptimeMillis() + delayMillis);
567    }


实际上调用的是sendMessageAtTime函数,该函数定义如下:

569    /**
570     * Enqueue a message into the message queueafter all pending messages
571     * before the absolute time (in milliseconds)<var>uptimeMillis</var>.
572     * <b>The time-base is {@linkandroid.os.SystemClock#uptimeMillis}.</b>
573     * You will receive it in {@link#handleMessage}, in the thread attached
574     * to this handler.
575     *
576     * @param uptimeMillis The absolute time atwhich the message should be
577     *        delivered, using the
578     *        {@link android.os.SystemClock#uptimeMillis} time-base.
579     *
580     * @return Returns true if the message wassuccessfully placed in to the
581     *        message queue.  Returns false onfailure, usually because the
582     *        looper processing the message queue is exiting.  Note that a
583     *        result of true does not mean the message will be processed -- if
584     *        the looper is quit before thedelivery time of the message
585     *        occurs then the message will be dropped.
586     */
587    public boolean sendMessageAtTime(Messagemsg, long uptimeMillis) {
588        MessageQueue queue = mQueue;
589        if (queue == null) {
590            RuntimeException e = newRuntimeException(
591                    this + "sendMessageAtTime() called with no mQueue");
592            Log.w("Looper",e.getMessage(), e);
593            return false;
594        }
595        return enqueueMessage(queue, msg,uptimeMillis);
596    }


实际上是调用enqueueMessage函数,将Message插入到MessageQueue中。该函数定义如下:

621    private boolean enqueueMessage(MessageQueuequeue, Message msg, long uptimeMillis) {
622        msg.target = this;
623        if (mAsynchronous) {
624            msg.setAsynchronous(true);
625        }
626        return queue.enqueueMessage(msg,uptimeMillis);
627    }


可以看到,622行,将Message.target设置为this,即当前Handler。这就解释了我们前面分析Looper时提出的问题:Looper从消息队列中取出了Message,然后调用Message.target.dispatchMessage函数,将消息发送到对应的处理函数,Message.target是什么时候被设置的?Message.target在使用Handler.sendMessage函数将消息发送到MessageQueue时,就被设置为当前Handler。

626行,调用MessageQueue.enqueueMessage将Message插入到MessageQueue中。

 

以上我们知道了怎样通过Handler.sendMessage等函数将Message插入到MessageQueue中。并且Looper在循环从MessageQueue中取出一个Message后,会调用Message.target.dispatchMessage函数,即Message对应的Handler的dispatchMessage函数。下面我们就来看一下Handler.dispatchMessage函数,其定义如下:

90    /**
 91     *Handle system messages here.
 92    */
 93   public void dispatchMessage(Message msg) {
 94       if (msg.callback != null) {
 95           handleCallback(msg);
 96       } else {
 97           if (mCallback != null) {
 98                if(mCallback.handleMessage(msg)) {
 99                    return;
100                }
101            }
102            handleMessage(msg);
103        }
104    }


可以看到,如果指定了Message.callback,则调用Handler.handleCallback函数,其定义如下:

732    private static void handleCallback(Messagemessage) {
733        message.callback.run();
734    }


Message.callback是Runnable类的对象,733行,调用Message.callback.run函数开始执行该Runnable对象。

如果Message.callback为null,则调用Handler.handleMessage函数,这也是我们在应用程序中创建Handler对象时,需要重载实现的handleMessage函数。

需要注意的是,如果mCallback不为null,还需要先调用mCallback.handleMessage函数,如果该函数返回非0值,就不再调用Handler.handleMessage函数了。mCallback定义如下:

738    final Callback mCallback;


可见,它是Callback接口类型:

73    /**
 74     *Callback interface you can use when instantiating a Handler to avoid
 75     *having to implement your own subclass of Handler.
 76     *
 77     *@param msg A {@link android.os.Message Message} object
 78     *@return True if no further handling is desired
 79    */
 80   public interface Callback {
 81       public boolean handleMessage(Message msg);
 82    }


 

分析到这里,我们就能理解Android的消息处理机制了。对于一个要处理消息的线程,它要调用Looper.prepare()创建当前线程的Looper对象,同时也创建了当前线程的MessageQueue对象,然后创建当前线程的Handler对象,重载Handler.handleMessage函数用于对消息进行处理,最后调用Looper.loop函数,循环从MessageQueue中取Message并分发处理。

在本文中,我们分析了一个普通线程如何处理Message,而对于Android的UI线程,与普通线程处理Message的基本原理是一样的,但处理起来又有一定区别,下一篇文章中,我们将来分析UI线程是如何处理Message的。

Android架构分析之Android消息处理机制(二),布布扣,bubuko.com

Android架构分析之Android消息处理机制(二)

标签:android   消息处理机制   

原文地址:http://blog.csdn.net/liuhaoyutz/article/details/26265425

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!