码迷,mamicode.com
首页 > 编程语言 > 详细

【python,threading】python多线程

时间:2014-11-28 16:02:20      阅读:267      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   ar   color   使用   sp   for   on   

使用多线程的方式

1、  函数式:使用threading模块threading.Thread(e.g target name parameters)

 1 import time,threading
 2 def loop():
 3     print("thread %s is running..." % threading.current_thread().name) 
 4     n = 0
 5     while n < 5:
 6         n += 1
 7         print("thread %s is running... n = %s" % (threading.current_thread().name,str(n))) 
 8         time.sleep(1)
 9     print("thread %s is over..." % threading.current_thread().name) 
10     
11 print("thread %s is running..." % threading.current_thread().name) 
12 
13 ts = []
14 for i in range(5):
15     t = threading.Thread(target = loop, name = loopThread + str(i))
16     t.start()
17     ts.append(t)
18 for t in ts:
19     t.join()
20 print("thread %s is over..." % threading.current_thread().name) 

多线程的输出:

thread MainThread is running...
thread loopThread 0 is running...
thread loopThread 0 is running... n = 1
thread loopThread 1 is running...
thread loopThread 1 is running... n = 1
thread loopThread 2 is running...
thread loopThread 2 is running... n = 1
thread loopThread 0 is running... n = 2
thread loopThread 1 is running... n = 2
thread loopThread 2 is running... n = 2
thread loopThread 0 is running... n = 3
thread loopThread 1 is running... n = 3
thread loopThread 2 is running... n = 3
thread loopThread 0 is running... n = 4
thread loopThread 1 is running... n = 4
thread loopThread 2 is running... n = 4
thread loopThread 0 is running... n = 5
thread loopThread 1 is running... n = 5
thread loopThread 2 is running... n = 5
thread loopThread 0 is over...
thread loopThread 1 is over...
thread loopThread 2 is over...
thread MainThread is over...

python中得thread的一些机制和C/C++不同:在C/C++中,主线程结束后,其子线程会默认被主线程kill掉。而在python中,主线程结束后,会默认等待子线程结束后,主线程才退出。

python对于thread的管理中有两个函数:join和setDaemon

join:如在一个线程B中调用threada.join(),则threada结束后,线程B才会接着threada.join()往后运行。

setDaemon:主线程A启动了子线程B,调用b.setDaemaon(True),则主线程结束时,会把子线程B也杀死。【此段内容摘录自junshao90的博客

2. 使用面向对象方式。创建子类继承自threading.Thread,需overwrite run方法

 1 import time,threading
 2 class threadTest(threading.Thread):    
 3     def __init__(self,tname):
 4         threading.Thread.__init__(self)
 5         self.name = tname    
 6     def run(self):
 7         print("thread %s is running..." % threading.current_thread().name) 
 8         n = 0
 9         while n < 5:
10             n += 1
11             print("thread %s is running... n = %s" % (threading.current_thread().name,str(n))) 
12             time.sleep(1)
13         print("thread %s is over..." % threading.current_thread().name)         
14 print("thread %s is running..." % threading.current_thread().name)   
15 
16 for i in range(3):
17     t = threadTest(t + str(i))
18     t.start()
19     t.join()
20 print("thread %s is over..." % threading.current_thread().name) 

运行输出:

thread MainThread is running...
thread t0 is running...
thread t0 is running... n = 1
thread t0 is running... n = 2
thread t0 is running... n = 3
thread t0 is running... n = 4
thread t0 is running... n = 5
thread t0 is over...
thread t1 is running...
thread t1 is running... n = 1
thread t1 is running... n = 2
thread t1 is running... n = 3
thread t1 is running... n = 4
thread t1 is running... n = 5
thread t1 is over...
thread t2 is running...
thread t2 is running... n = 1
thread t2 is running... n = 2
thread t2 is running... n = 3
thread t2 is running... n = 4
thread t2 is running... n = 5
thread t2 is over...
thread MainThread is over...

3. lock

 多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响。

 而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把  内容给改乱了。

lock 对象:

acquire():负责取得一个锁。如果没有线程正持有锁,acquire方法会立刻得到锁。否则,它闲意态等锁被释放。一旦acquire()返回,调用它的线程就持有锁。

release(): 释放锁。如果有其他线程正等待这个锁(通过acquire()),当release()被效用的时候,它们中的一个线程就会

被唤醒

以下内容摘自“廖雪峰的官方网站”

balance为共享资源,多进程同时执行,一定概率结果为balance != 0[详细描述见原文]
def change_it(n):
    # 先存后取,结果应该为0:
    global balance
    balance = balance + n
    balance = balance - n

使用threading.Lock()

import threading

total = 0
lock = threading.Lock()
def change(n):
    global total
    total += n
    total -= n

def run_thread(n):
    lock.acquire()
    for i in range(100000):
        change(n)
    lock.release()
    
t1 = threading.Thread(target = run_thread, args=(5,))
t2 = threading.Thread(target = run_thread, args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
print(total)

 4. 其他详细关于对进程的资料可参考

 解决共享资源问题的:条件变量,同步队列

 Vamei的博客Python标准库08 多线程与同步 (threading包)

 片片灵感的博客Python多线程学习

【python,threading】python多线程

标签:style   blog   http   ar   color   使用   sp   for   on   

原文地址:http://www.cnblogs.com/AlexBai326/p/4128640.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!