Ordeder原创文章,原文链接: http://blog.csdn.net/ordeder/article/details/41630945
源码版本 2.4.0
0-3G 用户空间 0x00000000 ~ 0xbfffffff
3-4G 内核空间 0xc0000000 ~ 0xffffffff
每个用户进程都有独立的用户空间(虚拟地址0-3),而内核空间是唯一的(相当于共享)
每个进程的用户空间用mm_struct描述,即task_struct.mm。
struct mm_struct { struct vm_area_struct * mmap; /* list of VMAs */ ... pgd_t * pgd; //用于地址映射 atomic_t mm_users; /* How many users with user space? */ atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ int map_count; /* number of VMAs */ ... //描述用户空间的段分布:数据段,代码段,堆栈段 unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long rss, total_vm, locked_vm; ... };以上结构描述了进程的用户空间的结构,其中
虚拟空间的空洞:虚拟空间还未被映射的区块(即没有被使用),那么就没有vm_area_struct结构
/* * This struct defines a memory VMM memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { struct mm_struct * vm_mm; /* VM area parameters */ unsigned long vm_start; //虚拟空间起始地址 unsigned long vm_end; //终止地址 /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next; //该区间的权限及标志 pgprot_t vm_page_prot; unsigned long vm_flags; //一些vm_area 的链接 ... struct vm_operations_struct * vm_ops; unsigned long vm_pgoff; /* offset in PAGE_SIZE units, *not* PAGE_CACHE_SIZE */ struct file * vm_file; //用于将磁盘文件映射至用户空间 ... };
struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access); //缺页操作 };
内核将物理地址按页来组织,struct page描述系统的物理页的信息,但是页的数据内容是不在该结构中的。系统有全局数据 struct page mem_map[],用于记录每个物理页。
页面大小为4kb,在源码中用体现为(PAGE_SHIFT = 12)
/* * Try to keep the most commonly accessed fields in single cache lines * here (16 bytes or greater). This ordering should be particularly * beneficial on 32-bit processors. * * The first line is data used in page cache lookup, the second line * is used for linear searches (eg. clock algorithm scans). */ typedef struct page { struct list_head list; struct address_space *mapping; unsigned long index; struct page *next_hash; atomic_t count; unsigned long flags; /* atomic flags, some possibly updated asynchronously */ struct list_head lru; unsigned long age; wait_queue_head_t wait; struct page **pprev_hash; struct buffer_head * buffers; void *virtual; /* non-NULL if kmapped */ struct zone_struct *zone; } mem_map_t;
struct page是用于描述一个物理页面,该结构仅仅是作为描述,也就是说该页面的4kb数据时存储于某个连续的4kb的物理空间(由MMU决定,具体见下文)。其中:
lru 页面缓冲的调度策略(最少使用优先)
题外话:
page也可以用于文件缓冲,相关参数及作用:
buffer_head 是和设备文件相关的操作,例如在文件系统中,file的一个page有4个块,这些块就存储于buffer_head链表指定的内存中。
index 在文件系统中是用于file缓冲的页号。
进程的虚拟空间描述中,pgd是用于页式存储的映射使用。当内核发生进程切换时,将新进程的pgd载入CR3寄存器,CPU中的MMU单元依据CR3寄存器进行页面映射。
pgd,pmd和pte可以看做是数组,为进程的地址空间到物理空间实现映射。其中虚拟地址的高位地址决定pgd,中间段地址决定pmd,而低位地址决定pte,pte是“page table entry”。typedef struct { unsigned long pte; } pte_t; typedef struct { unsigned long pmd; } pmd_t; typedef struct { unsigned long pgd; } pgd_t; typedef struct { unsigned long pgprot; } pgprot_t; //操作标志
1. 用户空间的虚拟地址vaddr通过MMU(pgd,pmd,pte)找到对应的页表项x(即为物理地址)
2. 页表项x的高20位是物理也好,物理页号index = x >> PAGE_SHIFT, 同理,index后面补上12个0就是物理页表的首地址。
3. 通过物理页号,我们可以再内核中找到该物理页的描述的指针mem_map[index],当然这个指针是虚拟地址,page结构见上文。
内核空间与物理地址之间有直接的映射关系,而不需要向用户空间那样通过mmu(pgd)。系统空间映射(3G开始)到物理空间0G起始:
例如:
系统内核映像载入的虚拟地址为3G+1M的起始地址,那么对应的物理地址为1M。
紧接着分配在3G+2M开始分配了8M的虚拟地址(物理地址为2-9M)用于PDG
之后预留了16M空间用DMA于存储。
而全局的page结构的mem_page[]数组是在0xc1000000开始的。
所以内核空间虚拟地址到物理地址的转换为:
PAGE_OFFSET = 3GB vitr_to_phys(kadd) return vadd - PAGE_OFFSET 内核空间的虚拟地址vaddr是通过如下方式找到它对应物理地址的page结构: vitr_to_page(vadd) index = virt_to_phys(kadd) >> PAGE_SHIFT return mem_map[index]
原文地址:http://blog.csdn.net/ordeder/article/details/41630945