本文介绍malloc的实现及其malloc在进行堆扩展操作,并分析了虚拟地址到物理地址是如何实现映射关系。
ordeder原创,原文链接: http://blog.csdn.net/ordeder/article/details/41654509
图1:来源 http://www.open-open.com/lib/view/open1409716051963.html
该结构是由进程task_struct.mm_struct进行管理的mm_struct的定义如下:
struct mm_struct { struct vm_area_struct * mmap; /* list of VMAs */ ... pgd_t * pgd; //用于地址映射 atomic_t mm_users; /* How many users with user space? */ atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ int map_count; /* number of VMAs */ ... //描述用户空间的段分布:数据段,代码段,堆栈段 unsigned long start_code, end_code, start_data, end_data; unsigned long start_brk, brk, start_stack; unsigned long arg_start, arg_end, env_start, env_end; unsigned long rss, total_vm, locked_vm; ... };
结构中的startxxx与endxxx描述了进程用户空间数据段的所在地址。对于堆空间而言,start_brk是堆空间的起始地址,堆是向上扩展的。对于进程堆空间的扩展,brk来记录堆的顶部位置。而进程动态申请的空间的已经使用到的地址空间(正在使用的变量)是被映射的,这些地址空间记录于链表struct vm_area_struct * mmap中。
虚拟地址和物理地址的映射 : http://blog.csdn.net/ordeder/article/details/41630945
malloc用于用户空间堆扩展的函数接口。该函数是C库,属于封装了相关系统调用(brk())的glibc库函数。而不是系统调用(系统可没有sys_malloc()。如果谈及malloc函数涉及的系统内核的那些操作,那么总体可以分为用户空间层面和内核空间层面来讨论。
malloc 的源码可见 http://repo.or.cz/w/glibc.git/blob/HEAD:/malloc/malloc.c
Malloc和free是在用户层工作的,该接口为用户提供一个比较方便管理堆的接口。它的主要工作是维护一个空闲的堆空间缓冲区链表。该缓冲区可以用如下数据结构表述:
struct malloc_chunk { INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ struct malloc_chunk* fd; /* double links -- used only if free. */ struct malloc_chunk* bk; /* Only used for large blocks: pointer to next larger size. */ struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ struct malloc_chunk* bk_nextsize; };
简化版的空闲缓冲区链表如下所示,图中head即为上述的malloc_chunk结构。而紧接着的size大小的内存区间是该chunk对应的数据区。
【malloc】
每当进程调用malloc,首先会在该堆缓冲区寻找足够大小的内存块分配给进程(选择缓冲区中的那个块就有首次命中和最佳命中两种算法)。如果freechunklist已无法满足需求的chunk时,那么malloc会通过调用系统调用brk()将进程空间的堆进行扩展,在新扩展的堆空间上建立一个新的chunk并加入到freelist中,这个过程相当于进程批量想系统申请一块内存(大小可能比实际需求大得多)。
malloc返回的地址是chunk的中用于存储数据的首地址,即: chunk + sizeof(chunk)
一个简单的首次命中malloc的伪代码:
chunk free_list malloc(size) foreach(chuck in freelist) if(chunk.size >size) return chunk + sizeof(chunk) //空闲缓冲区无法满足需求,那么像系统批发内存 add = sys_brk(brk+(size +sizeof(chunk))) newchunk = (chunk)add; newchunk.size = size; ... return newchunk + sizeof(newchunk)
【free】
free操作是对堆空间的回收,回收的区块并不是立即返还给内核。而是将区块对应的chunk“标记”为空闲,加入空闲队列中。当然,如果空闲队列中出现相邻地址的chunk,那么可以考虑合并,已解决内存的碎片化,一遍满足之后的大内存申请的需求。
free(add) pchunk = add - sizeof(chunk) insert_to_freelist(pchunk)
addr = vma.start do{ handle_mm_fault(mm,vma,addr,...) addr += PAGESIZE }while(addr< vma.end)
函数handle_mm_fault为addr所在的内存页映射物理页面。实现虚拟空间到物理空间的换算和映射。
1.通过alloc_page申请一个物理页面;
2.换算addr在进程pdg映射中所在的pte地址;
3.将addr对应的pte设置为物理页面的首地址。
当进程读取堆空间的地址vaddr时,虚拟地址vaddr到物理页面的映射如下图所示。
1. 用户空间的虚拟地址vaddr通过MMU(pgd,pmd,pte)找到对应的页表项pte记录的物理地址paddr
2. 页表项paddr的高20位是物理页号:index = x >> PAGE_SHIFT,同理,index后面补上12个0就是物理页表的首地址。
3. 通过物理页号,我们可以再内核中找到该物理页的描述的指针mem_map[index]。Page结构可以参考http://blog.csdn.net/ordeder/article/details/41630945。
1 Malloc 和 free 怎么看着就是个用户空间的内存池。特别free的实现。
2 堆的扩展依据brk的移动。Vm_area记录了虚拟空间中已使用的地址块。
3 每个进程的虚拟地址到物理地址的映射是有进程mm.pgd决定的,在该结构中记录了虚拟页号到物理页号的映射关系。
内核源码情景分析
http://blog.csdn.net/kobbee9/article/details/7397010
http://www.open-open.com/lib/view/open1409716051963.html
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access) { int ret = -1; pgd_t *pgd; pmd_t *pmd; pgd = pgd_offset(mm, address); pmd = pmd_alloc(pgd, address); if (pmd) { pte_t * pte = pte_alloc(pmd, address); //pmd是空的,所以返回的是pgd[address]的pte项目 if (pte) ret = handle_pte_fault(mm, vma, address, write_access, pte); } return ret; } //32位地址,pmd没有意义 extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } //为address地址所在的页构建pte索引项 extern inline pte_t *pte_alloc(pmd_t *pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); if (pmd_none(*pmd)) { pte_t *page = get_pte_fast(); if (!page) return get_pte_slow(pmd, address); pmd_set(pmd,page); return page + address; } if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *)__pmd_page(*pmd) + address; } //为address对应的页面分配物理页面 static inline int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t * pte) { pte_t entry; entry = *pte; if (!pte_present(entry)) { ... if (pte_none(entry)) return do_no_page(mm, vma, address, write_access, pte);//缺页,分配物理页 ... } ... return 1; } static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long address, int write_access, pte_t *page_table) { struct page * new_page; pte_t entry; //匿名(对于虚拟存储空间而言)的物理映射 if (!vma->vm_ops || !vma->vm_ops->nopage) return do_anonymous_page(mm, vma, page_table, write_access, address); //一下是文件的缺页处理,在此不表 ... } //通过page指针,即可计算page的物理地址: 物理地址 = (page指针 - mem_map)* 页大小 + 物理内存起始地址 /* * 匿名映射,用于虚存到物理内存 */ static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr) { struct page *page = NULL; pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); if (write_access) { page = alloc_page(GFP_HIGHUSER); //从高端内存中分配内存 if (!page) return -1; clear_user_highpage(page, addr); entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); mm->rss++; flush_page_to_ram(page); } set_pte(page_table, entry); // *page_table = entry; /* No need to invalidate - it was non-present before */ update_mmu_cache(vma, addr, entry); return 1; /* Minor fault */ } #define __MEMORY_START CONFIG_MEMORY_START //物理内存中用于动态分配使用的起始地址 void flush_page_to_ram(struct page *pg) { unsigned long phys; /* Physical address of this page */ phys = (pg - mem_map)*PAGE_SIZE + __MEMORY_START; __flush_page_to_ram(phys_to_virt(phys)); } #define __virt_to_phys(vpage) ((vpage) - PAGE_OFFSET + PHYS_OFFSET) #define __phys_to_virt(ppage) ((ppage) + PAGE_OFFSET - PHYS_OFFSET)
原文地址:http://blog.csdn.net/ordeder/article/details/41654509