码迷,mamicode.com
首页 > 编程语言 > 详细

图像放大快速算法

时间:2014-12-05 19:21:59      阅读:369      评论:0      收藏:0      [点我收藏+]

标签:mfc   图像缩放   二次线性插值   

图像放大快速算法实现的原理主要有以下两点:

1、横向缩放与纵向缩放分开,而先后顺序取决于缩放前后的图像比例:

   若SrcHeight/DstWidth>SrcWidth/DstWidth,则先纵向缩放,否则横向缩放。

2、利用整数运算代替浮点运算,由于是分步缩放,以横向缩放为例,利用二次线性插值公式,再变形一下如下:

f(i,j+v) = (1-v)f(i,j) +vf(i,j+1);

其中i为第i行,j为第j列,v表示求得放大后坐标的小数部分。

这里最重要的并没有直接用小数运算,而是通过将小数区间(0,1)映射到整数区间(0,128),    

再利用整数来代替小数运算,最后只需要相应的处理一下就可以了。

 

误差分析:

首先二次线性算法本来就有误差,这里主要讨论利用整数代替小数的误差,可以看到每一个整数能代替的小数范围为1/128,所以误差范围为[-1/256,1/256]之间。


代码实现:

//ImageScale.h

#define IN
#define OUT
#define _DWORD int
#define _BYTE byte
#define _WORD short

struct ImageInfo
{
	byte* pRGBData;
	int nHeight;
	int nStepValue;
	int nWidth;
//	int nFlag;
	ImageInfo()
	{
		pRGBData=NULL;
	}
	ImageInfo(byte *p,int h,int s,int w)
	{
	//	pRGBData = (byte*)malloc(h*s);
		pRGBData = p;
		nHeight=h;
		nStepValue=s;
		nWidth=w;
	}
};

class ImageScale
{
public:
	ImageScale(void);
	virtual ~ImageScale(void);
	void Run(BYTE* pSrcImage, int nSrcWidth, int nSrcHeight, BYTE* pTagImage, int nTagWidth, int nTagHeight,int nChannels);
private:
	bool DstInSrcIndex(int large_len, int little_len,  int* a3_pIntValue, byte* a4_pByteValue);
	int DoubleToInt(double d);
	BOOL HorizontalFill(IN ImageInfo& SrcImageInfo, IN int nTagHeight, IN int nTagWidth, IN int nTagStepValue, IN int bFlag, IN int* pIntValue, IN byte* pByteValue, OUT ImageInfo& DstImageInfo,int nChannels);
	BOOL VerticalFill(IN ImageInfo& SrcImageInfo, IN int nTagHeight, IN int nTagWidth, IN int nTagStepValue, IN int bFlag, IN int* pIntValue, IN byte* pByteValue, OUT ImageInfo& DstImageInfo,int nChannels);
	void HorizontalScale(byte *a1_pData_Src, byte *a2_pData_Dst, int nHeight, int nWidth, int *a5_pData_Unknow, byte *a6_pData_Unknow, int srcStepValue, int dstStepValue,  short *a10_pData_Unknow,int nChannels);
	void VerticalScale(byte *a1_pData_Src, byte *a2_pData_Dst, int a3_nHeight, int a4_nWidth, int *a5_pData_Unknow, byte *a6_pData_Unknow, int a7_nWidth, int a8_nWidthScrible,  short *a10_pData_Unknow,int nChannels);
};

//ImageScale.cpp


#include "StdAfx.h"
#include "ImageScale.h"

short g_pHSDataByte[]=
{
	0x4000, 0x0000, 0x3F80, 0x0080, 0x3F00, 0x0100, 0x3E80, 0x0180,
	0x3E00, 0x0200, 0x3D80, 0x0280, 0x3D00, 0x0300, 0x3C80, 0x0380,
	0x3C00, 0x0400, 0x3B80, 0x0480, 0x3B00, 0x0500, 0x3A80, 0x0580,
	0x3A00, 0x0600, 0x3980, 0x0680, 0x3900, 0x0700, 0x3880, 0x0780,
	0x3800, 0x0800, 0x3780, 0x0880, 0x3700, 0x0900, 0x3680, 0x0980,
	0x3600, 0x0A00, 0x3580, 0x0A80, 0x3500, 0x0B00, 0x3480, 0x0B80,
	0x3400, 0x0C00, 0x3380, 0x0C80, 0x3300, 0x0D00, 0x3280, 0x0D80,
	0x3200, 0x0E00, 0x3180, 0x0E80, 0x3100, 0x0F00, 0x3080, 0x0F80,
	0x3000, 0x1000, 0x2F80, 0x1080, 0x2F00, 0x1100, 0x2E80, 0x1180,
	0x2E00, 0x1200, 0x2D80, 0x1280, 0x2D00, 0x1300, 0x2C80, 0x1380,
	0x2C00, 0x1400, 0x2B80, 0x1480, 0x2B00, 0x1500, 0x2A80, 0x1580,
	0x2A00, 0x1600, 0x2980, 0x1680, 0x2900, 0x1700, 0x2880, 0x1780,
	0x2800, 0x1800, 0x2780, 0x1880, 0x2700, 0x1900, 0x2680, 0x1980,
	0x2600, 0x1A00, 0x2580, 0x1A80, 0x2500, 0x1B00, 0x2480, 0x1B80,
	0x2400, 0x1C00, 0x2380, 0x1C80, 0x2300, 0x1D00, 0x2280, 0x1D80,
	0x2200, 0x1E00, 0x2180, 0x1E80, 0x2100, 0x1F00, 0x2080, 0x1F80,
	0x2000, 0x2000, 0x1F80, 0x2080, 0x1F00, 0x2100, 0x1E80, 0x2180,
	0x1E00, 0x2200, 0x1D80, 0x2280, 0x1D00, 0x2300, 0x1C80, 0x2380,
	0x1C00, 0x2400, 0x1B80, 0x2480, 0x1B00, 0x2500, 0x1A80, 0x2580,
	0x1A00, 0x2600, 0x1980, 0x2680, 0x1900, 0x2700, 0x1880, 0x2780,
	0x1800, 0x2800, 0x1780, 0x2880, 0x1700, 0x2900, 0x1680, 0x2980,
	0x1600, 0x2A00, 0x1580, 0x2A80, 0x1500, 0x2B00, 0x1480, 0x2B80,
	0x1400, 0x2C00, 0x1380, 0x2C80, 0x1300, 0x2D00, 0x1280, 0x2D80,
	0x1200, 0x2E00, 0x1180, 0x2E80, 0x1100, 0x2F00, 0x1080, 0x2F80,
	0x1000, 0x3000, 0x0F80, 0x3080, 0x0F00, 0x3100, 0x0E80, 0x3180,
	0x0E00, 0x3200, 0x0D80, 0x3280, 0x0D00, 0x3300, 0x0C80, 0x3380,
	0x0C00, 0x3400, 0x0B80, 0x3480, 0x0B00, 0x3500, 0x0A80, 0x3580,
	0x0A00, 0x3600, 0x0980, 0x3680, 0x0900, 0x3700, 0x0880, 0x3780,
	0x0800, 0x3800, 0x0780, 0x3880, 0x0700, 0x3900, 0x0680, 0x3980,
	0x0600, 0x3A00, 0x0580, 0x3A80, 0x0500, 0x3B00, 0x0480, 0x3B80,
	0x0400, 0x3C00, 0x0380, 0x3C80, 0x0300, 0x3D00, 0x0280, 0x3D80,
	0x0200, 0x3E00, 0x0180, 0x3E80, 0x0100, 0x3F00, 0x0080, 0x3F80,
	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000
};


ImageScale::ImageScale(void)
{
}


ImageScale::~ImageScale(void)
{

}

void ImageScale::Run(BYTE* pSrcImage, int nSrcWidth, int nSrcHeight,  BYTE* pTagImage, int nTagWidth, int nTagHeight, int nChannels)
{

	if (!(nChannels==1||nChannels==4))
		return;
	if(nSrcWidth<=0 || nSrcHeight<=0 )
		return;
	if(nTagWidth<nSrcWidth || nTagHeight<nSrcHeight)
		return;
	int nSrcStepValue=(nSrcWidth+15) & ~15;
	int nTagStepValue=nTagWidth;

	//申请四个内存空间
    int* pIntValueTmp_nHeight = (int*)malloc(nTagHeight*sizeof(int));//存储纵坐标索引值
	if (pIntValueTmp_nHeight)
	{
		memset(pIntValueTmp_nHeight, 0,nTagHeight*sizeof(int));
	}
	
	byte* pByteValueTmp_nHeight = (byte*)malloc(nTagHeight);//存储纵坐标下的小数映射到整数空间下的值
	if (pByteValueTmp_nHeight)
	{
		memset(pByteValueTmp_nHeight, 0, nTagHeight);
	}

	int* pIntValueTmp_nWidth = (int*)malloc(nTagWidth*sizeof(int));//存储横坐标索引值
	if (pIntValueTmp_nWidth)
	{
		memset(pIntValueTmp_nWidth, 0, nTagWidth*sizeof(int));
	}

	byte* pByteValueTmp_nWidth = (byte*)malloc(nTagWidth);//存储横坐标下的小数映射到整数空间下的值
	if (pByteValueTmp_nWidth)
	{
		memset(pByteValueTmp_nWidth, 0, nTagWidth);
	}
    DstInSrcIndex(nTagWidth,nSrcWidth, pIntValueTmp_nWidth, pByteValueTmp_nWidth);
	DstInSrcIndex(nTagHeight, nSrcHeight, pIntValueTmp_nHeight, pByteValueTmp_nHeight);
	int nValueTmp1 = nSrcHeight * nTagWidth;
	int nValueTmp2 = nSrcWidth * nTagHeight;

	ImageInfo SrcImageInfo(pSrcImage,nSrcHeight,nSrcStepValue,nSrcWidth);
	ImageInfo ImageInfo_Tmp1;
	ImageInfo ImageInfo_Tmp2;

	if (nValueTmp1 > nValueTmp2)
	{
		VerticalFill(SrcImageInfo, nTagHeight, nTagWidth, nTagStepValue, 0, pIntValueTmp_nHeight, pByteValueTmp_nHeight, ImageInfo_Tmp1,nChannels);

		HorizontalFill(ImageInfo_Tmp1, nTagHeight, nTagWidth, nTagStepValue,  0, pIntValueTmp_nWidth , pByteValueTmp_nWidth, ImageInfo_Tmp2,nChannels);
	}
	else
	{
		HorizontalFill(SrcImageInfo, nTagHeight, nTagWidth, nTagStepValue, 1, pIntValueTmp_nWidth, pByteValueTmp_nWidth, ImageInfo_Tmp1,nChannels);
    	VerticalFill(ImageInfo_Tmp1, nTagHeight, nTagWidth, nTagStepValue,  1,pIntValueTmp_nHeight, pByteValueTmp_nHeight, ImageInfo_Tmp2,nChannels);
	}
	//pTagImage=(byte*)malloc(nTagHeight * nTagWidth);
   for (int i=0; i<nTagHeight; i++)
	{
		memcpy(pTagImage +nChannels*i*nTagWidth, ImageInfo_Tmp2.pRGBData+ nChannels*i*nTagWidth, nChannels*nTagWidth);
	}


	//【释放堆内存】
	if (pIntValueTmp_nHeight)
	{
		free(pIntValueTmp_nHeight);
		pIntValueTmp_nHeight = NULL;
	}

	if (pByteValueTmp_nHeight)
	{
		free(pByteValueTmp_nHeight);
		pByteValueTmp_nHeight = NULL;
	}

	if (pIntValueTmp_nWidth)
	{
		free(pIntValueTmp_nWidth);
		pIntValueTmp_nWidth = NULL;
	}

	if (pByteValueTmp_nWidth)
	{
		free(pByteValueTmp_nWidth);
		pByteValueTmp_nWidth = NULL;
	}

	if (ImageInfo_Tmp1.pRGBData)
	{
		free(ImageInfo_Tmp1.pRGBData);
		ImageInfo_Tmp1.pRGBData = NULL;
	}

	if (ImageInfo_Tmp2.pRGBData)
	{
		free(ImageInfo_Tmp2.pRGBData);
		ImageInfo_Tmp2.pRGBData = NULL;
	}

}

bool ImageScale::DstInSrcIndex(int large_len, int little_len,  int* a3_pIntValue, byte* a4_pByteValue)
{
	int nValueTmp3 =  (little_len << 7) - 128;

	for (int index = 0;  index<large_len;  ++index)
	{
		float doubleValueTmp3 = ((float)index + 0.5) / ((float)large_len);
		int nValueTmp4 = (int)(doubleValueTmp3 * (little_len - 0.5f) * 128.0+0.5f);
     	int nValueTmp1= nValueTmp3;
		if(!(nValueTmp3<nValueTmp4))
			 nValueTmp1= nValueTmp4;
		a3_pIntValue[index] = nValueTmp1 >> 7;
		a4_pByteValue[index] = nValueTmp1 & 0x7F;
	}
	return true;
}

BOOL ImageScale::HorizontalFill(IN ImageInfo& SrcImageInfo, IN int nTagHeight, IN int nTagWidth, IN int nTagStepValue, IN int bFlag, IN int* pIntValue, IN byte* pByteValue, OUT ImageInfo& DstImageInfo,int nChannels)
{
	int nHeightTmp1 = 0;
	if (bFlag)
	{
		nHeightTmp1 = SrcImageInfo.nHeight;
	} 
	else
	{
		nHeightTmp1 = nTagHeight;
	}

	//申请额外的空间保证内存对齐
	int StepValueTmp=(SrcImageInfo.nStepValue+15) & ~15;
	byte *pSrcImageTmp=(byte*)malloc(nChannels * StepValueTmp * nHeightTmp1);
	memset(pSrcImageTmp,0,nChannels * StepValueTmp * nHeightTmp1);
	int SumTmp1=nChannels * StepValueTmp,SumTmp2=nChannels * SrcImageInfo.nWidth;
	for(int i=0;i<nHeightTmp1;i++)
	{
		memcpy(pSrcImageTmp+i*SumTmp1,SrcImageInfo.pRGBData+i*SumTmp2,SumTmp2);
	}
//	ImageInfo SrcImageInfo(pSrcImageTmp,SrcImageInfo.nHeight,StepValueTmp,SrcImageInfo.nWidth);
	//调用HorizontalScale进行水平延伸,结果保存到DstImageInfo中
	DstImageInfo.nHeight = nHeightTmp1;
	DstImageInfo.nWidth = nTagWidth;
	DstImageInfo.nStepValue = nTagStepValue;
	DstImageInfo.pRGBData = (byte*)malloc(nChannels * DstImageInfo.nHeight * DstImageInfo.nStepValue);
	byte* pDataSrc = SrcImageInfo.pRGBData;
	byte* pDataDst = DstImageInfo.pRGBData;
	HorizontalScale(pSrcImageTmp, pDataDst, DstImageInfo.nHeight, DstImageInfo.nWidth, pIntValue, pByteValue, 
		SrcImageInfo.nStepValue, DstImageInfo.nStepValue, g_pHSDataByte,nChannels);

	if (pSrcImageTmp)
	{
		free(pSrcImageTmp);
		pSrcImageTmp=NULL;
	}
	return TRUE;
}

BOOL ImageScale::VerticalFill(IN ImageInfo& SrcImageInfo, IN int nTagHeight, IN int nTagWidth, IN int nTagStepValue, IN int bFlag, IN int* pIntValue, IN byte* pByteValue, OUT ImageInfo& DstImageInfo,int nChannels)
{
	int nWidthTmp1 = 0;
	int nStepValueTmp1 = 0;
	if (bFlag)
	{
		nWidthTmp1 = nTagWidth;
		nStepValueTmp1 = nTagStepValue;
	}
	else
	{
		nWidthTmp1 = SrcImageInfo.nWidth;
		nStepValueTmp1 = SrcImageInfo.nStepValue;
	}

	//申请额外的空间保证内存对齐
	int StepValueTmp=(SrcImageInfo.nStepValue+15) & ~15;
	byte *pSrcImageTmp=(byte*)malloc(nChannels * StepValueTmp *( SrcImageInfo.nHeight+1));// 多申请一层来保证内存不会泄露
	memset(pSrcImageTmp,0,nChannels * StepValueTmp * (SrcImageInfo.nHeight+1));
	int SumTmp1=nChannels * StepValueTmp,SumTmp2=nChannels * SrcImageInfo.nWidth,SumTmp3=nChannels * SrcImageInfo.nStepValue;
	for(int i=0;i<SrcImageInfo.nHeight;i++)
	{
		memcpy(pSrcImageTmp+i*SumTmp1,SrcImageInfo.pRGBData+i*SumTmp3,SumTmp2);
	}
	// 最后一层用上一层填充
	memcpy(pSrcImageTmp+SrcImageInfo.nHeight*SumTmp1,SrcImageInfo.pRGBData+(SrcImageInfo.nHeight-1)*SumTmp3,SumTmp2);
	DstImageInfo.nHeight = nTagHeight;
	DstImageInfo.nWidth = nWidthTmp1;
	DstImageInfo.nStepValue = nStepValueTmp1;
	DstImageInfo.pRGBData = (byte*)malloc( nChannels * DstImageInfo.nHeight*DstImageInfo.nStepValue);
	memset(DstImageInfo.pRGBData, 0,nChannels * DstImageInfo.nHeight*DstImageInfo.nStepValue);

	VerticalScale(pSrcImageTmp, DstImageInfo.pRGBData, DstImageInfo.nHeight, DstImageInfo.nWidth,
		pIntValue, pByteValue, StepValueTmp, DstImageInfo.nStepValue, g_pHSDataByte,nChannels);
	if (pSrcImageTmp)
	{
		free(pSrcImageTmp);
		pSrcImageTmp=NULL;
	}
	return TRUE;
}
void ImageScale::HorizontalScale(byte *a1_pData_Src, byte *a2_pData_Dst, int nHeight, int nWidth, int *a5_pData_Unknow, byte *a6_pData_Unknow, int srcStepValue, int dstStepValue,  short *a10_pData_Unknow,int nChannels)
{
	int v17,v18,v19,v20;
	int srcstep,dststep,index1,index2,index3;
	if(nChannels==4)
	{
		srcstep=( dstStepValue<<2);
		dststep=(srcStepValue<<2);
		for (int i=0;i<nHeight;i++)
		{
			for(int j=0;j<nWidth;j++)
			{
				v17 = a5_pData_Unknow[j];   // 遍历,依次获得int表数据
				v18 = ( a6_pData_Unknow[j]<<1);
				index1=((v17+1)<<2);
				index2=(v17<<2);
				index3=(j<<2);
				//blue通道
				v19 = a1_pData_Src[index1+MT_BLUE] * a10_pData_Unknow[v18 + 1];   // 加上小数位的精度
			    v20 = (v19 + a10_pData_Unknow[v18] * a1_pData_Src[index2+MT_BLUE] + 0x2000) >> 14; //0x2000右移14位为0.5,这里是为了四舍五入;
			    a2_pData_Dst[index3+MT_BLUE] =v20&0xff;
				//green通道
				v19 = a1_pData_Src[index1+MT_GREEN] * a10_pData_Unknow[v18 + 1];   
			    v20 = (v19 + a10_pData_Unknow[v18] * a1_pData_Src[index2+MT_GREEN] + 0x2000) >> 14; 
			    a2_pData_Dst[index3+MT_GREEN] =v20&0xff;
				//red通道
				v19 = a1_pData_Src[index1+MT_RED] * a10_pData_Unknow[v18 + 1];  
			    v20 = (v19 + a10_pData_Unknow[v18] * a1_pData_Src[index2+MT_RED] + 0x2000) >> 14; 
			    a2_pData_Dst[index3+MT_RED] =v20&0xff;
			    a2_pData_Dst[index3+MT_ALPHA] =255;
		}
		a2_pData_Dst +=srcstep;
		a1_pData_Src +=dststep ;
	 }
	}
	else
	{
		for (int i=0;i<nHeight;i++)
     	{
			for(int j=0;j<nWidth;j++)
			{
				v17 = a5_pData_Unknow[j];   // 遍历,依次获得int表数据
			    v18 = ( a6_pData_Unknow[j]<<1);
			    v19 = a1_pData_Src[v17+1] * a10_pData_Unknow[v18 + 1];   // 加上小数位的精度
			    v20 = (v19 + a10_pData_Unknow[v18] * a1_pData_Src[v17] + 0x2000) >> 14; //0x2000右移14位为0.5,这里是为了四舍五入;
			    a2_pData_Dst[j] = v20&0xff;;
		}
		a2_pData_Dst += dstStepValue;
		a1_pData_Src += srcStepValue;
	}
	}

}
void ImageScale::VerticalScale(byte *a1_pData_Src, byte *a2_pData_Dst, int a3_nHeight, int a4_nWidth, int *a5_pData_Unknow, byte *a6_pData_Unknow, int a7_nWidth, int a8_nWidthScrible, short *a10_pData_Unknow,int nChannels)
{
	byte * pbTmp1;
	int nTmp2,nTmp3,nTmp4;
	int step,index1,index2,index3;
	if(nChannels==4)
	{
		step=(a8_nWidthScrible<<2);
		index1=nChannels*a7_nWidth;
		for (int i=0;i<a3_nHeight;i++)
		{
			pbTmp1= &a1_pData_Src[index1*a5_pData_Unknow[i]];
			nTmp2 = a10_pData_Unknow[a6_pData_Unknow[i]<<1];
		    nTmp3 = a10_pData_Unknow[(a6_pData_Unknow[i]<<1) + 1];
	     	for (int j=0;j<a4_nWidth;j++)
	    	{
			   index2=((a7_nWidth+j)<<2);
			   index3=(j<<2);
			   //blue通道
		       nTmp4 = (nTmp3 * pbTmp1[index2+MT_BLUE] +nTmp2 * pbTmp1[index3+MT_BLUE] + 0x2000)>>14;
			   a2_pData_Dst[index3+MT_BLUE] = nTmp4&0xff;
			   //green通道
		       nTmp4 = (nTmp3 * pbTmp1[index2+MT_GREEN] +nTmp2 * pbTmp1[index3+MT_GREEN] + 0x2000)>>14;
			   a2_pData_Dst[index3+MT_GREEN] = nTmp4&0xff;
			   //red通道
		       nTmp4 = (nTmp3 * pbTmp1[index2+MT_RED] +nTmp2 * pbTmp1[index3+MT_RED] + 0x2000)>>14;
			   a2_pData_Dst[index3+MT_RED] = nTmp4&0xff;
			   a2_pData_Dst[index3+MT_ALPHA] = 255;

			}
			a2_pData_Dst += step;
		}
		
	}
	else
	{
		for (int i=0;i<a3_nHeight;i++)
	    {
	    	pbTmp1= &a1_pData_Src[a7_nWidth*a5_pData_Unknow[i]];
	    	nTmp2 = a10_pData_Unknow[a6_pData_Unknow[i]<<1];
	    	nTmp3 = a10_pData_Unknow[(a6_pData_Unknow[i]<<1) + 1];
		    for (int j=0;j<a4_nWidth;j++)
		    {
			   nTmp4 = (nTmp3 * pbTmp1[a7_nWidth+j] +nTmp2 * pbTmp1[j] + 0x2000)>>14;
			  a2_pData_Dst[j] = nTmp4&0xff;
		     }
		    a2_pData_Dst += a8_nWidthScrible;

	     }
	}

}



图像放大快速算法

标签:mfc   图像缩放   二次线性插值   

原文地址:http://blog.csdn.net/alop_daoyan/article/details/41750761

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!