码迷,mamicode.com
首页 > 编程语言 > 详细

C++ vs Python向量运算速度评测

时间:2014-12-05 20:53:17      阅读:1398      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   ar   os   使用   sp   for   strong   

本文的起源来自最近一个让我非常不爽的事。

我最近在改一个开源RNN工具包currennt(http://sourceforge.net/projects/currennt/),想用它实现RNNLM功能。

currennt使用了大量的面向对象的编程技巧,可以使用GPU,向量运算使用了thrust库(https://code.google.com/p/thrust/)。

RNNLM(http://rnnlm.org/)也有相应开源实现,非常算法风格的代码,向量运算就是自己使用数组实现的。

结果……大出我的语料,在不使用GPU的情况下,currennt慢成狗!我不断的修改,直到最后几乎完全在currennt里重写了一个RNNLM……速度才终于一致了。这花费了我大量时间,最关键的是我根本没打算花这些时间,算是计划外开销。

所以这里干脆对常用的几种向量运算做个评测,下回遇到至少心里有数。


参与评测的向量实现包括:

  1. C++ array
  2. C++ STL vector
  3. C++ thrust(CPU)
  4. C++ thrust(GPU)
  5. python
  6. python numpy
  7. python theano

评测指标包括:

  • 创建、填充向量
  • 向量点乘,相乘
  • 矩阵相乘

测试环境:

VS2010

python 2.7.6

Intel Xeon CPU E5649@2.53GHz x24

thrust v1.5


C++ array

创建全0向量:0.000s,几乎不占用时间

int vector_size=100000000;
float* vector=(float*)calloc(vector_size,sizeof(float));

创建+填充向量:0.140s

int vector_size=100000000;
float* vector=(float*)calloc(vector_size,sizeof(float));
for (int i=0;i<vector_size;++i){
	vector[i]=0.01;
}

向量点乘:0.390s

float sum=0;
for(int i=0;i<vector_size;++i){
	sum+=vector1[i]*vector2[i];
}

向量相乘:0.265s

float sum=0;
for(int i=0;i<vector_size;++i){
	vector3[i]=vector1[i]*vector2[i];
}

矩阵乘向量:0.344s

int matrix1_colnum=50000;
int matrix1_rownum=2000;
int matrix1_size=matrix1_colnum*matrix1_rownum;
float* vector1=(float*)calloc(matrix1_size,sizeof(float));
for (int i=0;i<matrix1_size;++i){
	vector1[i]=0.01;
}

float* vector2=(float*)calloc(matrix1_colnum,sizeof(float));
for (int i=0;i<matrix1_colnum;++i){
	vector2[i]=0.02;
}

start_t=clock();
float* vector3=(float*)calloc(matrix1_rownum,sizeof(float));
for(int row=0;row<matrix1_rownum;++row){
	for(int col=0;col<matrix1_colnum;++col){
		vector3[row]+=vector1[row*matrix1_colnum+col]*vector2[col];
	}
}
end_t=clock();

矩阵乘矩阵:0.749

(耗费时间与matrix1_rownum*matrix1_colnum*matrix2_colnum成正比)

int matrix1_rownum=200;
int matrix1_colnum=5000;
int matrix1_size=matrix1_colnum*matrix1_rownum;
float* vector1=(float*)calloc(matrix1_size,sizeof(float));
for (int i=0;i<matrix1_size;++i){
	vector1[i]=0.01;
}

int matrix2_rownum=5000;
int matrix2_colnum=200;
int matrix2_size=matrix2_rownum*matrix2_colnum;
float* vector2=(float*)calloc(matrix2_size,sizeof(float));
for (int i=0;i<matrix2_size;++i){
	vector2[i]=0.02;
}

int matrix3_size=matrix1_rownum*matrix2_colnum;
float* vector3=(float*)calloc(matrix3_size,sizeof(float));
start_t=clock();
for(int row1=0;row1<matrix1_rownum;++row1){
	for(int col2=0;col2<matrix2_colnum;++col2){
		for(int col1=0;col1<matrix1_colnum;++col1){
			vector3[row1*matrix2_colnum+col2]+=vector1[row1*matrix1_colnum+col1]*vector2[col1*matrix2_colnum+col2];
		}
	}
}
end_t=clock();

C++ STL vector

创建全0向量:0.140s

int vect_size=100000000;
vector<float> vector(vect_size);

创建+填充向量:0.140s

int vect_size=100000000;
vector<float> vector(vect_size,0.01);

向量点乘:0.375s

int vect_size=100000000;
vector<float> vector1(vect_size,0.01);
vector<float> vector2(vect_size,0.02);
start_t=clock();
float sum=0;
for(int i=0;i<vect_size;++i){
	sum+=vector1[i]*vector2[i];
}
end_t=clock();

向量相乘:0.250s

int vect_size=100000000;
vector<float> vector1(vect_size,0.01);
vector<float> vector2(vect_size,0.02);
vector<float> vector3(vect_size);
start_t=clock();
for(int i=0;i<vect_size;++i){
	vector3[i]=vector1[i]*vector2[i];
}
end_t=clock();

矩阵乘向量:0.390s

int matrix1_colnum=50000;
int matrix1_rownum=2000;
int matrix1_size=matrix1_colnum*matrix1_rownum;
vector<float> vector1(matrix1_size,0.01);
vector<float> vector2(matrix1_colnum,0.02);
vector<float> vector3(matrix1_rownum);
start_t=clock();
for(int row=0;row<matrix1_rownum;++row){
	for(int col=0;col<matrix1_colnum;++col){
		vector3[row]+=vector1[row*matrix1_colnum+col]*vector2[col];
	}
}
end_t=clock();

矩阵乘法:0.827s

int matrix1_rownum=200;
int matrix1_colnum=5000;
int matrix1_size=matrix1_colnum*matrix1_rownum;
vector<float> vector1(matrix1_size,0.01);

int matrix2_rownum=5000;
int matrix2_colnum=200;
int matrix2_size=matrix2_rownum*matrix2_colnum;
vector<float> vector2(matrix2_size,0.02);

int matrix3_size=matrix1_rownum*matrix2_colnum;
vector<float> vector3(matrix3_size);
start_t=clock();
for(int row1=0;row1<matrix1_rownum;++row1){
	for(int col2=0;col2<matrix2_colnum;++col2){
		for(int col1=0;col1<matrix1_colnum;++col1){
			vector3[row1*matrix2_colnum+col2]+=vector1[row1*matrix1_colnum+col1]*vector2[col1*matrix2_colnum+col2];
		}
	}
}
end_t=clock();

C++ thrust(CPU)

创建全0向量:0.140s

int vect_size=100000000;
thrust::host_vector<float> vector1(vect_size);

创建+填充向量:0.140s

int vect_size=100000000;
thrust::host_vector<float> vector1(vect_size,0.01);

填充向量:0.078s

thrust::fill(vector1.begin(),vector1.end(),0.01);

向量点乘:0.359s

int vect_size=100000000;
thrust::host_vector<float> vector1(vect_size,(float)0.1);
thrust::host_vector<float> vector2(vect_size,(float)0.2);
thrust::host_vector<float> vector3(vect_size,(float)0.2);

start_t=clock();
thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>());
float sum=thrust::reduce(vector3.begin(),vector3.end(),(float)0,thrust::multiplies<float>());
end_t=clock();

向量相乘:0.187s

int vect_size=100000000;
thrust::host_vector<float> vector1(vect_size,(float)0.1);
thrust::host_vector<float> vector2(vect_size,(float)0.2);
thrust::host_vector<float> vector3(vect_size);
start_t=clock();
thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies<float>());
end_t=clock();

矩阵乘向量:0.110s

struct matrixXvect_func
{
	thrust::host_vector<float>* matrix;
	thrust::host_vector<float>* vector;
	int matrix_rownum;
	int matrix_colnum;

	__host__ __device__
	float operator()(const int& idx) const{
		float t=0;
		for(int col=0;col<matrix_colnum;++col){
			t+=(*matrix)[idx*matrix_colnum+col]* (*vector)[col];
		}
		return t;
	}
};

int matrix1_colnum=50000;
int matrix1_size=matrix1_colnum*matrix1_rownum;

thrust::host_vector<float> vector1(matrix1_size,(float)0.1);
thrust::host_vector<float> vector2(matrix1_colnum,(float)0.2);
thrust::host_vector<float> vector3(matrix1_rownum);

start_t=clock();

matrixXvect_func fn;
fn.matrix=&vector1;
fn.vector=&vector2;
fn.matrix_rownum=matrix1_rownum;
fn.matrix_colnum=matrix1_colnum;

thrust::transform(
            thrust::counting_iterator<int>(0),
            thrust::counting_iterator<int>(0) + matrix1_rownum,
            vector3.begin(),
            fn
            );

end_t=clock();

矩阵乘矩阵:0.655s

struct matrixXmatrix_func
{
	thrust::host_vector<float>* matrix1;
	thrust::host_vector<float>* matrix2;
	int matrix1_rownum;
	int matrix1_colnum;
	int matrix2_rownum;
	int matrix2_colnum;

	__host__ __device__
	float operator()(const int& idx) const{
		int rownum=idx/matrix2_colnum;
		int colnum=idx%matrix2_colnum;
		float t=0;
		for(int col=0;col<matrix1_colnum;++col){
			t+=(*matrix1)[rownum*matrix1_colnum+col]* (*matrix2)[col*matrix2_colnum+colnum];
		}
		return t;
	}
};

int matrix1_rownum=200;
int matrix1_colnum=5000;
int matrix1_size=matrix1_colnum*matrix1_rownum;
thrust::host_vector<float> vector1(matrix1_size,(float)0.1);

int matrix2_rownum=5000;
int matrix2_colnum=200;
int matrix2_size=matrix2_rownum*matrix2_colnum;
thrust::host_vector<float> vector2(matrix2_size,(float)0.2);

int matrix3_size=matrix1_rownum*matrix2_colnum;
thrust::host_vector<float> vector3(matrix3_size);

start_t=clock();

matrixXmatrix_func fn;
fn.matrix1=&vector1;
fn.matrix2=&vector2;
fn.matrix1_rownum=matrix1_rownum;
fn.matrix1_colnum=matrix1_colnum;
fn.matrix2_rownum=matrix2_rownum;
fn.matrix2_colnum=matrix2_colnum;

thrust::transform(
            thrust::counting_iterator<int>(0),
            thrust::counting_iterator<int>(0) + matrix3_size,
            vector3.begin(),
            fn
            );

end_t=clock();

  

 

C++ vs Python向量运算速度评测

标签:style   blog   http   ar   os   使用   sp   for   strong   

原文地址:http://www.cnblogs.com/plwang1990/p/4147379.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!