码迷,mamicode.com
首页 > 编程语言 > 详细

算法导论-------------红黑树

时间:2014-12-08 09:21:36      阅读:501      评论:0      收藏:0      [点我收藏+]

标签:算法导论   红黑树   

红黑树是一种二叉查找树,但在每个结点上增加了一个存储位表示结点的颜色,可以是RED或者BLACK。通过对任何一条从根到叶子的路径上各个着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。本章主要介绍了红黑树的性质、左右旋转、插入和删除。重点分析了在红黑树中插入和删除元素的过程,分情况进行详细讨论。一棵高度为h的二叉查找树可以实现任何一种基本的动态集合操作,如SEARCH、PREDECESSOR、SUCCESSOR、MIMMUM、MAXMUM、INSERT、DELETE等。当二叉查找树的高度较低时,这些操作执行的比较快,但是当树的高度较高时,这些操作的性能可能没有链表好。红黑树(red-black tree)是一种平衡的二叉查找树,它能保证在最坏情况下,基本的动态操作集合运行时间为O(lgn)。本章内容有些复杂,看了两天,才大概清楚其插入和删除过程,日后需要经常回顾,争取完全消化掉。红黑树的用途非常广泛,例如STL中的map就是采用红黑树实现的,效率非常之高,有机会可以研究一下STL的源代码。

     不说了,看了两天的算法导论,终于把红黑树实现了,为了下半辈子过的好点,我也是蛮拼的bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

红黑树的5个重要的性质:

(1)每个结点或是红色,或是黑色。

(2)根结点是黑色。

(3)每个叶子结点(NIL)是黑色。

(4)如果有一个结点是红色,则它的两个儿子都是黑色。

(5)对每个结点,从该结点到其孙子结点的所有路径上包含相同数目的黑色结点。


     bubuko.com,布布扣

引理:一棵有n个内结点的红黑树的高度之多为2lg(n+1)。

还有一条重要性质:红黑树会确保没有一条路径会比其它路径长出两倍。

红黑树的一些操作在算法导论上都有详细的讲解,还有推理过程,讲的非常仔细,需要花一定的时间去理解,俺奋斗了2天,周末放假都呆在家里面没出去,这就是做一个码农的生活.

写了一个晚上好几个小时都在的调试代码,因为自己的粗心,在代码中对称操作的时候,有一个地方左右没有改过来导致我改了几个小时,NND,。bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

//*********************************************************************/
//time:2014.12.8 0:22
//author:ugly_chen(stallman)
//csdn: http://blog.csdn.net/chenxun_2010
//*********************************************************************/

#include<iostream>
#include<stack>

using namespace std;

static const int RED = 0;
static const int BLACK = 1;

template <class T>
class Red_Black_Tree_Node
{
public:
	Red_Black_Tree_Node(T k) :key(k), color(BLACK), p(NULL), left(NULL), right(NULL) {}
	T key;
	int color;
	Red_Black_Tree_Node<T>* p;
	Red_Black_Tree_Node<T>* left;
	Red_Black_Tree_Node<T>* right;
};

template <class T>
class Red_Black_Tree
{
public:
	Red_Black_Tree();

	Red_Black_Tree_Node<T>* get_root() const;//获取根节点


	Red_Black_Tree_Node<T>* search_tree_node(const T& k)const;//查找关键字为k的节点
	Red_Black_Tree_Node<T>* tree_maxmum(Red_Black_Tree_Node<T> *root) const;//查找最大关键字的节点
	Red_Black_Tree_Node<T>* tree_minmum(Red_Black_Tree_Node<T> *root) const;//查找最小关键字的节点
	Red_Black_Tree_Node<T>* tree_successor(Red_Black_Tree_Node<T> *pnode) const;//查找后继节点
	Red_Black_Tree_Node<T>* tree_predecessor(Red_Black_Tree_Node<T> *pnode) const;//查找钱继节点
	
	void left_rotate(Red_Black_Tree_Node<T> *pnode);//左旋转操作
	void right_rotate(Red_Black_Tree_Node<T> *pnode);//右旋转操作
	void rb_insert_fixup(Red_Black_Tree_Node<T> *pnode);//修正插入操作引起的违反红黑树性质的行为
	void rb_delete_fixup(Red_Black_Tree_Node<T> *pnode);//修正删除操作引起的违反红黑树性质的行为
	
	void rb_insert(Red_Black_Tree_Node<T>* z);//插入节点
	void rb_delete(Red_Black_Tree_Node<T>* z);//删除节点


	void inorder_tree_walk()const;//中序遍历红黑树:这样就是从小到大的顺序输出红黑树
	void make_empty(Red_Black_Tree_Node<T>* root);
	//~Red_Black_Tree();


public:
	static	Red_Black_Tree_Node<T> *NIL;
private:
	Red_Black_Tree_Node<T>* root;
};

//初始化nil
template <class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::NIL = new Red_Black_Tree_Node<T>(-1);

//初始化root节点   利用默认构造函数
template <class T>
Red_Black_Tree<T>::Red_Black_Tree()
{
	root = NIL;
};

//---------------------------------------------------------------------------------------
template<class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::get_root() const//获取根节点
{
	return root;
}
//------------------------------------------------------------------------------------------
//查找树中关键字key的节点
template <class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::search_tree_node(const T& key) const
{
	Red_Black_Tree_Node<T>* p = root;
	while (p != NIL)
	{
		if (p->key == key)
			break;
		else if (p -> key > key)
			p = p->left;
		else
			p = p->right;
	}

	return p;
}


//----------------------------------------------------------------------------------------
//查找最大关键字的节点
template <class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::tree_maxmum(Red_Black_Tree_Node<T> *root) const
{
	Red_Black_Tree_Node<T>* p = root;
	while (p->right != NIL)
	{
		p = p->right;
	}

	return p;
}


//------------------------------------------------------------------------------------------
//查找数中最小关键字的节点
template<class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::tree_minmum(Red_Black_Tree_Node<T>* root) const
{
	Red_Black_Tree_Node<T>* p = root;
	while (p->left != NIL)
	{
		p = p->left;
	}

	return p;
}


//----------------------------------------------------------------------------------------------
//查找后继节点:大于x的最小点
template<class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::tree_successor(Red_Black_Tree_Node<T>* x) const
{
	if (x->right != NIL)
		return tree_minmum(x->right);

	Red_Black_Tree_Node<T>* y = x->p;
	while (y != NIL &&x == y->right)
	{
		x = y;
		y = y->p;
	}

	return y;
}

//--------------------------------------------------------------------------------------------------
//查找前驱节点://查找中序遍历下x的前驱,即小于x的最大值 
template<class T>
Red_Black_Tree_Node<T>* Red_Black_Tree<T>::tree_predecessor(Red_Black_Tree_Node<T> *x) const
{
	if (x->left != NIL)
		return tree_maxmum(x->left);

	Red_Black_Tree_Node<T>* y = x->p;
	while (y != NIL&&x == y->left)
	{
		x = y;
		y = y->p;
	}

	return y;
}

//----------------------------------------------------------------------------------------------------
//左旋转
template<class T>
void Red_Black_Tree<T>::left_rotate(Red_Black_Tree_Node<T> *x)
{
	Red_Black_Tree_Node<T> *y = x->right;
	x->right = y->left; 
	if (y->left != NIL)
		y->left->p = x;

	y->p = x->p;
	if (x->p == NIL)
		root = y;
	else if (x == x->p->left)
		x->p->left = y;
	else
		x->p->right = y;

	y->left = x;
	x->p = y;
}

//右旋转
//------------------------------------------------------------------------------------------------------
template<class T>
void Red_Black_Tree<T>::right_rotate(Red_Black_Tree_Node<T> *x)
{
	Red_Black_Tree_Node<T> *y = x->left;
	x->left = y->right;
	if (y->right != NIL)
		y->right->p = x;

	y->p = x->p;
	if (x->p == NIL)
		root = y;
	else if (x == x->p->left)
		x->p->left = y;
	else
		x->p->right = y;

	y->right = x;
	x->p = y;
}

//--------------------------------------------------------------------------------
//插入的子过程:修正插入过后可能违反红黑树的节点
template<class T>
void  Red_Black_Tree<T>::rb_insert_fixup(Red_Black_Tree_Node<T>* z)
{
	Red_Black_Tree_Node<T> *y;
	while (z->p->color == RED)
	{
		if (z->p == z->p->p->left)//z.p是z祖父的左孩子
		{
			y = z->p->p->right;

			if (y->color == RED)//case1 z的叔节点为红色
			{
				z->p->color = BLACK;
				y->color = BLACK;
				z->p->p->color = RED;
				z = z->p->p;
			}
			else   //case 2 or case 3:叔节点是黑色
			{
				if (z == z->p->right)//z是右孩子
				{
					z = z->p;
					left_rotate(z);
				}
				//case3  z为左孩子
				z->p->color = BLACK;
				z->p->p->color = RED;
				right_rotate(z->p->p);
			}

		}

		else if (z->p == z->p->p->right)//z.p是z祖父的右孩子,和上边情况相同也有三种情形
		{
			y = z->p->p->left;
			if (y->color == RED)
			{
				z->p->color = BLACK;
				y->color = BLACK;
				z->p->p->color = RED;
				z = z->p->p;
			}
			else
			{
				if (z == z->p->left)
				{
					z = z->p;
					right_rotate(z);
				}

				z->p->color = BLACK;
				z->p->p->color = RED;
				left_rotate(z->p->p);
			}
		}
	}
	root->color = BLACK;
}


//-------------------------------------------------------------------------------------------
//修正删除rb_tree某个节点带来的可能违反红黑树性质的行为
template<class T>
void Red_Black_Tree<T>::rb_delete_fixup(Red_Black_Tree_Node<T> *x)
{
	Red_Black_Tree_Node<T> *w;
	//如果这个额外的黑色在一个根结点或一个红结点上,结点会吸收额外的黑色,成为一个黑色的结点
	while (x != root&&x->color == BLACK)
	{
		//若x是其父的左结点(右结点的情况相对应)  
		if (x == x->p->left)
		{
			//令w为x的兄弟,根据w的不同,分为三种情况来处理  
			//执行删除操作前x肯定是没有兄弟的,执行删除操作后x肯定是有兄弟的
			w = x->p->right;

			if (w->color == RED)// case 1  w为红色
			{
				w->color = BLACK;
				x->p->color = RED;
				left_rotate(x->p);
				w = x->p->right;//由这种情形可以进入2 3 4任何一种情形
			}

			if (w->left->color == BLACK && w->right->color == BLACK)//case 2:w为黑色,w的两个孩子也都是黑色  
			{
				w->color = RED;
				x = x->p;
			}
			else //case 3 w是黑色的,w->left是红色的,w->right是黑色的
			{
				if (w->right->color == BLACK)
				{
					w->left->color = BLACK;
					w->color = RED;
					right_rotate(w);
					w = x->p->right;
				}

				//case 4:w是黑色的,w->left可以是红色也是可以是黑色,w->right 是红色
				//修改 w 和 x.p的颜色  
				w->color = x->p->color;
				x->p->color = BLACK;
				w->right->color = BLACK;
				left_rotate(x->p);
				x = root;
			}
		}
		else if (x == x->p->right)//x为其父节点的右孩子
		{ 
			w = x->p->left;  
			if (w->color == RED)//case1,w.color为红色
			{
				w->color = BLACK;
				x->p->color = RED; 
				right_rotate(x->p);  
				w = x->p->left;//令w为x的兄弟,转为2.3.4三种情况之一  
			}
			  
			if (w->right->color == BLACK && w->left->color == BLACK)//case2:w为黑色,w的两个孩子也都是黑色
			{ 
				w->color = RED;
				x = x->p;
			}
			else //case3:w是黑色的,w->left黑色,w->right是红色(与上面的相反:w->left是红色的,w->right是黑色的)
			{
				if (w->left->color == BLACK)
				{  
					w->right->color = BLACK;
					w->color = RED; 
					left_rotate(w);
					  
					w = x->p->left;////令w为x的新兄弟,进入case4
				}
				//case4:w是黑色的, w->left是红色 , w->right是可以是红色也可以是黑色.
				//修改w和p[x]的颜色  
				w->color = x->p->color;
				x->p->color = BLACK;
				w->left->color = BLACK; 
				right_rotate(x->p);
				//此时调整已经结束,将x置为根结点是为了结束循环  
				x = root;
			}
		}
	}

	x->color = BLACK;//while循环结束的时候x的的颜色为红色,用来吸收黑色.
}


//---------------------------------------------------------------------------------------------
//插入操作:rb_insert
template<class T>
void Red_Black_Tree<T>::rb_insert(Red_Black_Tree_Node<T>* z)
{
	Red_Black_Tree_Node<T>* y = NIL;
	Red_Black_Tree_Node<T>* x = root;
	while (x != NIL)//找到插入的位置
	{
		y = x;
		if (z->key < x->key)
			x = x->left;
		else
			x = x->right;
	}

	z->p = y;
	if (y == NIL)
		root = z;
	else if (z->key < y->key)
		y->left = z;
	else
		y->right = z;

	z->left = NIL;
	z->right = NIL;
	z->color = RED;

	rb_insert_fixup(z);
}


//-------------------------------------------------------------------------------
//节点删除操作:rb_delete
template<class T>
void Red_Black_Tree<T>::rb_delete(Red_Black_Tree_Node<T>* z)
{
	Red_Black_Tree_Node<T>* y;
	Red_Black_Tree_Node<T>* x;
	if (z->left == NIL || z->right == NIL)
		y = z;
	else y = tree_successor(z);

	if (y->left != NIL)
		x = y->left;
	else x = y->right;

	x->p = y->p;
	if (y->p == NIL)
		root = x;
	else if (y == y->p->left)
		y->p->left = x;
	else
		y->p->right = x;

	if (y != z)
		z->key = y->key;
	//如果被删除的结点是黑色的,则需要调整  
	if (y->color == BLACK)
		rb_delete_fixup(x);
}


//-----------------------------------------------------------------------------------------
//中序遍历红黑树,利用stack的功能从小到大输出红黑树
template <class T>
void Red_Black_Tree<T>::inorder_tree_walk() const
{
	if (NULL != root)
	{
		stack<Red_Black_Tree_Node<T>* > s;
		Red_Black_Tree_Node<T> *p;
		p = root;
		while (NIL != p || !s.empty())
		{
			if (NIL != p)
			{
				s.push(p);
				p = p->left;
			}
			else
			{
				p = s.top();
				s.pop();
				cout << p->key << ":";
				if (p->color == BLACK)
					cout << "Black" << endl;
				else
					cout << "Red" << endl;
				p = p->right;
			}
		}
	}
}


int main()
{
	Red_Black_Tree<int> tree ;
	int s[6] = { 41, 38, 31, 12, 19, 8 };
	int i;
	for (i = 0; i< 6; i++)
	{
		Red_Black_Tree_Node<int> *z = new Red_Black_Tree_Node<int>(s[i]);
		tree.rb_insert(z);
	}
	cout << "根节点是:" << tree.get_root()->key << endl;
	tree.inorder_tree_walk();

	int s2[10] = { 8, 12, 20, 38, 39, 48,666,999,1,100 };
	for (i = 0; i< 6; i++)
	{
		Red_Black_Tree_Node<int> *z = tree.search_tree_node(s2[i]);
		if (z != tree.NIL )
			tree.rb_delete(z);
	}
	cout << "删除操作后的红黑树根节点是:"<<tree.get_root()->key << endl;
	tree.inorder_tree_walk();

	return 0;
}

最后要感谢两位大牛:

http://www.cnblogs.com/Anker/archive/2013/01/30/2882773.html

http://blog.csdn.net/mishifangxiangdefeng/article/details/7718917

bubuko.com,布布扣


算法导论-------------红黑树

标签:算法导论   红黑树   

原文地址:http://blog.csdn.net/chenxun_2010/article/details/41796121

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!