题目大意:给定一个多边形,求对称轴数量
我X 这究竟是怎么想到KMP的……
首先 将边字符化 即找到这个多边形的中心 然后用与中心构成的三角形的边-角-边的方式表示这条边
将边顺时针扫一遍 然后倍增至长度为2n-1 再逆时针扫一遍 逆时针扫的那遍在顺时针那遍中出现的次数就是对称轴数目
用KMP算法就能搞出来 证明自己YY吧
出题人卡精度丧心病狂。。。
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define M 100100 #define EPS 1e-6 using namespace std; struct point{ double x,y; point(){} point(double _,double __): x(_),y(__){} void Read() { scanf("%lf%lf",&x,&y); } void operator += (const point &Y) { x+=Y.x;y+=Y.y; } point operator - (const point &Y) const { return point(x-Y.x,y-Y.y); } double operator * (const point &Y) const { return x*Y.y-Y.x*y; } point operator / (double a) const { return point(x/a,y/a); } }points[M],centre; struct line{ double d1,d2,cross; line(){} line(double _,double __,double ___): d1(_),d2(__),cross(___/_/__){} bool operator == (const line &Y) const; }a[M],b[M<<1]; int n; bool line :: operator == (const line &Y) const { if(fabs(d1-Y.d1)>EPS) return false; if(fabs(d2-Y.d2)>EPS) return false; if(fabs(cross-Y.cross)>EPS) return false; return true; } double Distance(const point &p1,const point &p2) { return sqrt( (p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y) ); } int KMP(int len) { static int next[M]; int i,fix=0,re=0; for(i=2;i<=n;i++) { while( fix && !(a[fix+1]==a[i]) ) fix=next[fix]; if( a[fix+1]==a[i] ) ++fix; next[i]=fix; } fix=0; for(i=1;i<=len;i++) { while( fix && !(a[fix+1]==b[i]) ) fix=next[fix]; if( a[fix+1]==b[i] ) ++fix; if(fix==n) ++re,fix=next[fix]; } return re; } int main() { //freopen("osi.in","r",stdin); //freopen("osi.out","w",stdout); int T; for(cin>>T;T;T--) { int i; cin>>n;centre=point(0.0,0.0); for(i=1;i<=n;i++) points[i].Read(),centre+=points[i]/static_cast<double>(n); for(i=1;i<=n;i++) b[i]=b[i+n]=line(Distance(points[i],centre),Distance(points[i%n+1],centre), (points[i]-centre)*(points[i%n+1]-centre) ); for(i=n;i;i--) a[n-i+1]=line(b[i].d2,b[i].d1,0),a[n-i+1].cross=b[i].cross; cout<<KMP(n+n-1)<<endl; } }
BZOJ 1100 POI2007 对称轴osi 计算几何+KMP算法
原文地址:http://blog.csdn.net/popoqqq/article/details/41847901