标签:top k top100 mapreduce topk算法 hadoop 1.x
Hadoop读书笔记系列文章:http://blog.csdn.net/caicongyang/article/category/2166855 (系列文章会逐步修整完成,添加数据文件格式预计相关注释)
从给定的文件中的找到最大的100个值,给定的数据文件格式如下:
533 16565 17800 2929 11374 9826 6852 20679 18224 21222 8227 5336 912 29525 3382 2100 10673 12284 31634 27405 18015 ...
TreeMapDemo.java
package suanfa; import java.util.Map.Entry; import java.util.TreeMap; public class TreeMapDemo { public static void main(String[] args) { TreeMap<Long, Long> tree = new TreeMap<Long, Long>(); tree.put(1333333L, 1333333L); tree.put(1222222L, 1222222L); tree.put(1555555L, 1555555L); tree.put(1444444L, 1444444L); for (Entry<Long, Long> entry : tree.entrySet()) { System.out.println(entry.getKey()+":"+entry.getValue()); } System.out.println(tree.firstEntry().getValue()); //最小值 System.out.println(tree.lastEntry().getValue()); //最大值 System.out.println(tree.navigableKeySet()); //从小到大的正序key集合 System.out.println(tree.descendingKeySet());//从大到小的倒序key集合 } }
TopKAapp.java
package suanfa; import java.io.IOException; import java.net.URI; import java.util.TreeMap; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner; /** * * <p> * Title: TopKAapp.java Package suanfa * </p> * <p> * Description: 从算1000w个数据中找到最大的100个数 * <p> * * @author Tom.Cai * @created 2014-12-10 下午10:56:44 * @version V1.0 * */ public class TopKAapp { private static final String INPUT_PATH = "hdfs://192.168.80.100:9000/topk_input"; private static final String OUT_PATH = "hdfs://192.168.80.100:9000/topk_out"; public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf); final Path outPath = new Path(OUT_PATH); if (fileSystem.exists(outPath)) { fileSystem.delete(outPath, true); } final Job job = new Job(conf, TopKAapp.class.getSimpleName()); FileInputFormat.setInputPaths(job, INPUT_PATH); job.setMapperClass(MyMapper.class); job.setPartitionerClass(HashPartitioner.class); job.setNumReduceTasks(1); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(NullWritable.class); job.setOutputValueClass(LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(OUT_PATH)); job.setOutputFormatClass(TextOutputFormat.class); job.waitForCompletion(true); } static class MyMapper extends Mapper<LongWritable, Text, NullWritable, LongWritable> { public static final int K = 100; private TreeMap<Long, Long> tree = new TreeMap<Long, Long>(); public void map(LongWritable key, Text text, Context context) throws IOException, InterruptedException { long temp = Long.parseLong(text.toString()); tree.put(temp, temp); if (tree.size() > K) tree.remove(tree.firstKey()); } @Override protected void cleanup(Context context) throws IOException, InterruptedException { for (Long text : tree.values()) { context.write(NullWritable.get(), new LongWritable(text)); } } } static class MyReducer extends Reducer<NullWritable, LongWritable, NullWritable, LongWritable> { public static final int K = 100; private TreeMap<Long, Long> tree = new TreeMap<Long, Long>(); @Override protected void cleanup(Context context) throws IOException, InterruptedException { for (Long val : tree.descendingKeySet()) { context.write(NullWritable.get(), new LongWritable(val)); } } @Override protected void reduce(NullWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { for (LongWritable value : values) { tree.put(value.get(), value.get()); if (tree.size() > K) tree.remove(tree.firstKey()); } } } }
欢迎大家一起讨论学习!有用的自己收!
记录与分享,让你我共成长!
欢迎查看我的其他博客;
我的个人博客:http://blog.caicongyang.com ;
我的CSDN博客地址: http://blog.csdn.net/caicongyang ;
Hadoop读书笔记(十四)MapReduce中TopK算法(Top100算法)
标签:top k top100 mapreduce topk算法 hadoop 1.x
原文地址:http://blog.csdn.net/caicongyang/article/details/41875095