标签:style blog http io ar color os sp for
今天介绍DBN的内容,其中关键部分都是(Restricted Boltzmann Machines, RBM)的步骤,所以先放一张rbm的结构,帮助理解
(图来自baidu的一个讲解ppt)
==========================================================================================
照例,我们首先来看一个完整的DBN的例子程序:
这是\tests\test_example_DBN.m 中的ex2
//train dbn dbn.sizes = [100 100]; opts.numepochs = 1; opts.batchsize = 100; opts.momentum = 0; opts.alpha = 1; dbn =dbnsetup(dbn, train_x, opts); //here!!! dbn = dbntrain(dbn, train_x, opts); //here!!! //unfold dbn to nn nn = dbnunfoldtonn(dbn, 10); //here!!! nn.activation_function = ‘sigm‘; //train nn opts.numepochs = 1; opts.batchsize = 100; nn = nntrain(nn, train_x, train_y, opts); [er, bad] = nntest(nn, test_x, test_y); assert(er < 0.10, ‘Too big error‘);
其中的过程简单清晰明了,就是dbnsetup(),dbntrain()以及dbnunfoldtonn()三个函数
最后fine tuning的时候用了(一)里看过的nntrain和nntest,参见(一)
这个实在没什么好说的,
for u = 1 : numel(dbn.sizes) - 1
dbn.rbm{u}.alpha = opts.alpha;
dbn.rbm{u}.momentum = opts.momentum;
dbn.rbm{u}.W = zeros(dbn.sizes(u + 1), dbn.sizes(u));
dbn.rbm{u}.vW = zeros(dbn.sizes(u + 1), dbn.sizes(u));
dbn.rbm{u}.b = zeros(dbn.sizes(u), 1);
dbn.rbm{u}.vb = zeros(dbn.sizes(u), 1);
dbn.rbm{u}.c = zeros(dbn.sizes(u + 1), 1);
dbn.rbm{u}.vc = zeros(dbn.sizes(u + 1), 1);
end
function dbn = dbntrain(dbn, x, opts)
n = numel(dbn.rbm);
//对每一层的rbm进行训练
dbn.rbm{1} = rbmtrain(dbn.rbm{1}, x, opts);
for i = 2 : n
x = rbmup(dbn.rbm{i - 1}, x);
dbn.rbm{i} = rbmtrain(dbn.rbm{i}, x, opts);
end
end
首先映入眼帘的是对第一层进行rbmtrain(),后面每一层在train之前用了rbmup, for i = 1 : opts.numepochs //迭代次数
kk = randperm(m);
err = 0;
for l = 1 : numbatches
batch = x(kk((l - 1) * opts.batchsize + 1 : l * opts.batchsize), :);
v1 = batch;
h1 = sigmrnd(repmat(rbm.c‘, opts.batchsize, 1) + v1 * rbm.W‘); //gibbs sampling的过程
v2 = sigmrnd(repmat(rbm.b‘, opts.batchsize, 1) + h1 * rbm.W);
h2 = sigm(repmat(rbm.c‘, opts.batchsize, 1) + v2 * rbm.W‘);
//Contrastive Divergence 的过程
//这和《Learning Deep Architectures for AI》里面写cd-1的那段pseudo code是一样的
c1 = h1‘ * v1;
c2 = h2‘ * v2;
//关于momentum,请参看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》
//它的作用是记录下以前的更新方向,并与现在的方向结合下,跟有可能加快学习的速度
rbm.vW = rbm.momentum * rbm.vW + rbm.alpha * (c1 - c2) / opts.batchsize;
rbm.vb = rbm.momentum * rbm.vb + rbm.alpha * sum(v1 - v2)‘ / opts.batchsize;
rbm.vc = rbm.momentum * rbm.vc + rbm.alpha * sum(h1 - h2)‘ / opts.batchsize;
//更新值
rbm.W = rbm.W + rbm.vW;
rbm.b = rbm.b + rbm.vb;
rbm.c = rbm.c + rbm.vc;
err = err + sum(sum((v1 - v2) .^ 2)) / opts.batchsize;
end
end
function nn = dbnunfoldtonn(dbn, outputsize)
%DBNUNFOLDTONN Unfolds a DBN to a NN
% outputsize是你的目标输出label,比如在MINST就是10,DBN只负责学习feature
% 或者说初始化Weight,是一个unsupervised learning,最后的supervised还得靠NN
if(exist(‘outputsize‘,‘var‘))
size = [dbn.sizes outputsize];
else
size = [dbn.sizes];
end
nn = nnsetup(size);
%把每一层展开后的Weight拿去初始化NN的Weight
%注意dbn.rbm{i}.c拿去初始化了bias项的值
for i = 1 : numel(dbn.rbm)
nn.W{i} = [dbn.rbm{i}.c dbn.rbm{i}.W];
end
end
最后fine tuning就再训练一下NN就可以了【转帖】【面向代码】学习 Deep Learning(二)Deep Belief Nets(DBNs)
标签:style blog http io ar color os sp for
原文地址:http://www.cnblogs.com/daleloogn/p/4162470.html