Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
题意:给定一个未排序的数组,返回其排序后的数组中 相邻元素之差 最大的值。
比如给定:[5,9,8,3,15]
排序后为:[3,5,8,9,15],相邻元素之差最大的是15-9=6,返回6。
复杂度要求:时间空间均为O(n)。
这道题最直接的解法是,先排序,得到有序数组,然后再对相邻元素作差,找出差最大的,比如下面简短的代码:
class Solution {
public:
int maximumGap(vector<int> &num) {
if(num.size()<2) return 0;
sort(num.begin(),num.end()); //O(nlogn)
int gap=-1;
for(int i=1;i<num.size();i++){
gap=max(gap,num[i]-num[i-1]);
}
return gap;
}
};
那么,线性的排序算法有哪些?计数排序、基数排序、桶排序。
下面用桶排序实现,这也是leetcode上给出的参考解法,我直接copy过来:
Suppose there are N elements and they range from A to B.
Then the maximum gap will be no smaller than ceiling[(B - A) / (N - 1)]
Let the length of a bucket to be len = ceiling[(B - A) / (N - 1)], then we will have at most num = (B - A) / len + 1 of bucket
for any number K in the array, we can easily find out which bucket it belongs by calculating loc = (K - A) / len and therefore maintain the maximum and minimum elements in each bucket.
Since the maximum difference between elements in the same buckets will be at most len - 1, so the final answer will not be taken from two elements in the same buckets.
For each non-empty buckets p, find the next non-empty buckets q, then q.min - p.max could be the potential answer to the question. Return the maximum of all those values.
根据上面的思路,得到代码如下:class Solution {
public:
int maximumGap(vector<int> &num) {
if (num.size() < 2) return 0;
//遍历一遍,找出最大最小值
int maxNum = num[0];
int minNum = num[0];
for (int i : num) {
maxNum=max(maxNum,i);
minNum=min(minNum,i);
}
// 每个桶的长度len,向上取整所以加+
int len = (maxNum - minNum) / num.size() + 1;
//桶的个数:(maxNum - minNum) / len + 1,每个桶里面存储属于该桶的最大值和最小值即可,注意这里的最大最小值是局部的
vector<vector<int>> buckets((maxNum - minNum) / len + 1);
for (int x : num) {
int i = (x - minNum) / len;
if (buckets[i].empty()) {
buckets[i].reserve(2);
buckets[i].push_back(x);
buckets[i].push_back(x);
} else {
if (x < buckets[i][0]) buckets[i][0] = x;
if (x > buckets[i][1]) buckets[i][1] = x;
}
}
//gap的计算,For each non-empty buckets p, find the next non-empty buckets q, return min( q.min - p.max )
int gap = 0;
int prev = 0;
for (int i = 1; i < buckets.size(); i++) {
if (buckets[i].empty()) continue;
gap = max(gap, buckets[i][0] - buckets[prev][1]);
prev = i;
}
return gap;
}
};
【其他解法以后再更新】
原文地址:http://blog.csdn.net/u012162613/article/details/41936569