码迷,mamicode.com
首页 > 编程语言 > 详细

Python代码优化概要

时间:2014-12-21 14:01:12      阅读:274      评论:0      收藏:0      [点我收藏+]

标签:python

Python即是面向过程语言,也是面向对象语言,更多情况下充当脚本语言的角色。虽是脚本语言,但同样涉及到代码优化的问题,代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使程序运行效率更高,根据80/20原则,实现程序的重构、优化、扩展以及文档相关的事情通常需要消耗80%的工作量。

优化通常包含两方面的内容:

1. 减小代码的体积、提高代码的可读性及可维护性

2. 改进算法,降低代码复杂度,提高代码运行效率。

选择合适的数据结构一个良好的算法能够对性能起到关键作用,因此性能改进的首要点是对算法的改进。

在算法的时间复杂度排序上依次是:

O(1) > O(lg n) > O(n lg n) > O(n^2) > O(n^3) > O(n^k) > O(k^n) > O(n!)


比如说字典是哈希结构,遍历字典算法复杂度是O(1),而列表算法复杂度是O(n),因此查找对象字典比列表快。

下面列出一些代码优化的技巧,以概要方式总结。由于时间关系,只总结其中一部分,以后会持续更新。

说明

测试的工具: 包括time模块,timeit模块,profile模块或cProfile模块

验证的方式:包括Python ShelliPythonPython脚本

测试的环境: 包括Python 2.7.6IPython 2.3.1 

NOTE: 

1. 一般来说c开头是c语言实现,速度更快些,比如cProfile就比profile快。cPickle比pickle快。

2. 一般来说Python版本较高,在速度上都有很大提升,所以测试环境不同,结果不一样。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+= 比 +快

从Python2.0开始,增加了增强性数据类型,比如说

X += Y

等价于X = X + Y

1. 就优化来说,左侧只需计算一次。在X += Y中,X可以使复杂的对象表达式。在增强形式中,则只需要计算一次。

然而,在完整的X = X + Y中,X出现两次,必须执行两次。因此增强赋值语句通常更快些。

In [4]: Timer('S = S + "eggs"','S = "SPAM"').timeit()
Out[4]: 2.8523161220051065

In [5]: Timer('S += "eggs"','S = "SPAM"').timeit()
Out[5]: 2.602857082653941
2. 优化技术会自动选择,对于支持原处修改的对象而言,增强形式会自动执行原处的修改运算,而不是相比来说速度更慢的复制。

普通复制:

>>> M = [1,2,3]
>>> L = M
>>> M = M + [5]
>>> M;L
[1, 2, 3, 4]
[1, 2, 3]
原处修改:
>>> M  = [1,2,3]
>>> L  = M
>>> M += [4]
>>> M;L
[1, 2, 3, 4]
[1, 2, 3, 4]

>>> Timer('L = L + [4,5,6]','L = [1,2,3]').timeit(20000)
4.324376213615835
>>> Timer('L += [4,5,6]','L = [1,2,3]').timeit(20000)
0.005897484107492801
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

可变对象内置函数比合并操作快

第一种方法: 普通添加来实现

>>> L = [1,2,3]
>>> L = L + [4]
>>> L
[1, 2, 3, 4]
第二种方法: 内置函数来实现
>>> L = [1,2,3]
>>> L.append(4)
>>> L
[1, 2, 3, 4]
其所花费的时间,相差数百倍:
>>> Timer('L = L + [4]','L = [1,2,3]').timeit(50000)
8.118179033256638
>>> Timer('L.append(4)','L = [1,2,3]').timeit(50000)    #内置函数append()方法
0.01078882192950914
>>> Timer('L.extend([4])','L = [1,2,3]').timeit(50000)  #内置函数extend()方法
0.020846637858539907
普通的合并操作虽然没有共享引用带来的副作用,与等效的原处修改相比,但速度很慢,合并操作必须建立新的对象,复制左侧的列表,再复制右侧的列表。与之相比的是:在原处的修改法只会在内存块的末尾添加元素。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

布尔测试比边界测试快

>>> Timer('X < Y and Y < Z','X=1;Y=2;Z=3').timeit(100000000)  #布尔测试
7.142944090197389
>>> Timer('X < Y < Z','X=1;Y=2;Z=3').timeit(100000000)        #边界测试,判断Y结余X,Z之间
11.501173499654769
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

短路运算比and运算快

在Python中,if用于条件判断,有下面几种情况

X and Y:  X与Y同时为真,方为真

X  or Y:  X或Y任一位真,就为真, 也叫短路运算,即如果前面为真,后面则不判断

not X:    X为假时方为真

In [28]: Timer('2 or 3').timeit(100000000)  #短路运算:前面为真,后面不运算,所以速度快些
Out[28]: 3.780060393088206

In [29]: Timer('2 and 3').timeit(100000000) #and,必须运算为所有的,速度相对慢些
Out[29]: 4.313562268420355

In [30]: Timer('0 or 1').timeit(100000000)  #or运算,但前面为假,所以和前面速度相当
Out[30]: 4.251177957004984

In [31]: Timer('not 0').timeit(100000000)   #not运算,只需要判断一个条件,速度快些
Out[31]: 3.6270803685183637
在前面三个表达式中,短路运算和not运算无疑速度快些,and运算和or中前面条件为假者速度慢些。

所以在程序中适当使用,可以提高程序效率.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

append比insert速度快

列表的append方法要比insert方法快的多,因为后续的引用必须被移动以便使新元素腾地方.

复杂度append末尾添加,复杂度O(1),而insert复杂度是O(n)

>>> Timer('L.append(4)','L=[1,2,3,5,6]').timeit(200000)
0.03233202260122425
>>> Timer('L.insert(3,4)','L=[1,2,3,5,6]').timeit(200000)
18.31223843438289
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

成员变量测试:字典和集合快于列表和元祖

可以用in来做成员变量判断,比如‘a‘ in ‘abcd‘

判断列表和元祖中是否含有某个值的操作要比字典和集合慢的多。

因为Python会对列表中的值进行线性扫描,而另外两个基于哈希表,可以瞬间完成判断。数据越大,越明显!

In [44]: Timer('4 in L','L=(1,2,3,4,5,6,7,8,9)').timeit(100000000)
Out[44]: 12.941504527043435    #列表成员判断


In [45]: Timer('4 in T','T=[1,2,3,4,5,6,7,8,9]').timeit(100000000)
Out[45]: 12.883945908790338    #元祖成员判断,和列表差不多


In [46]: Timer('4 in S','S=set([1,2,3,4,5,6,7,8,9])').timeit(100000000)
Out[46]: 6.254324848690885     #集合成员判断,和字典差不多


In [47]: Timer('4 in D','D={1:"a",2:"b",3:"c",4:"d",5:"e",6:"f",7:"g",8:"h",9:"i"}').timeit(100000000)
Out[47]: 6.3508488422085065    #字典成员判断

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

列表合并extend比+速度快

列表合并(+)是一种相当费资源的操作,因为必须创建一个新列表并将所有对象复制进去。

而extend将元素附加到现有列表中,因此会快很多,尤其是创建一个大列表时尤其如此.

+操作执行结果:

import profile            #用cProfile会快些

def func_add():           #测试列表合并操作
    lst = []
    for i in range(5000): 
        for item in [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]:
            lst = lst + item
            
if __name__=='__main__':
    profile.run('func_add()')
#####测试结果:#####
>>> 
         5 function calls in 9.243 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 :0(range)
        1    0.006    0.006    0.006    0.006 :0(setprofile)
        1    0.000    0.000    9.237    9.237 <string>:1(<module>)
        1    9.236    9.236    9.236    9.236 Learn.py:3(func_add)
        1    0.000    0.000    9.243    9.243 profile:0(func_add())
        0    0.000             0.000          profile:0(profiler)

extend执行结果:

import profile

def func_extend():
    lst = []
    for i in range(5000):
        for item in [[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]:
            lst.extend(item)
    

if __name__=='__main__':
    profile.run('func_extend()')

#####输出结果:#####
>>> 
         55005 function calls in 0.279 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    55000    0.124    0.000    0.124    0.000 :0(extend)
        1    0.000    0.000    0.000    0.000 :0(range)
        1    0.005    0.005    0.005    0.005 :0(setprofile)
        1    0.000    0.000    0.274    0.274 <string>:1(<module>)
        1    0.149    0.149    0.273    0.273 Learn.py:3(func_extend)
        1    0.000    0.000    0.279    0.279 profile:0(func_extend())
        0    0.000             0.000          profile:0(profiler)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

xrange比range快

In [9]: Timer('for i in range(1000): pass').timeit()
Out[9]: 30.839959527228757

In [10]: Timer('for i in xrange(1000): pass').timeit()
Out[10]: 19.644791055468943
xrange是range的C语言实现,更高效的内存管理。

xrange:每次只迭代一个对象

range:一次生成所有数据,需要一个个扫描

NOTE: 在Python3.0中取消了xrange函数,只留range,不管这个range其实就是xrange,只不过名字变了。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

内置函数>列表推导>for循环>while循环

http://blog.csdn.net/jerry_1126/article/details/41773277

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

局部变量>全局变量

import profile

A = 5

def param_test():
    B = 5
    res = 0
    for i in range(100000000):
        res = B + i
    return res
        
if __name__=='__main__':
    profile.run('param_test()')
>>> ===================================== RESTART =====================================
>>> 
         5 function calls in 37.012 seconds  #全局变量测试结果:37 s


   Ordered by: standard name


   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1   19.586   19.586   19.586   19.586 :0(range)
        1    1.358    1.358    1.358    1.358 :0(setprofile)
        1    0.004    0.004   35.448   35.448 <string>:1(<module>)
        1   15.857   15.857   35.443   35.443 Learn.py:5(param_test)
        1    0.206    0.206   37.012   37.012 profile:0(param_test())
        0    0.000             0.000          profile:0(profiler)




>>> ===================================== RESTART =====================================
>>> 
         5 function calls in 11.504 seconds    #局部变量测试结果: 11s


   Ordered by: standard name


   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    3.135    3.135    3.135    3.135 :0(range)
        1    0.006    0.006    0.006    0.006 :0(setprofile)
        1    0.000    0.000   11.497   11.497 <string>:1(<module>)
        1    8.362    8.362   11.497   11.497 Learn.py:5(param_test)
        1    0.000    0.000   11.504   11.504 profile:0(param_test())
        0    0.000             0.000          profile:0(profiler)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

while 1 > while True

while 1执行结果:

import cProfile

def while_1():
    tag = 0
    while 1:
        tag += 1
        if tag > 100000000:
            break

       
if __name__=='__main__':
    cProfile.run('while_1()')

>>> ===================================== RESTART =====================================
>>> 
         4 function calls in 5.366 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.006    0.006    0.006    0.006 :0(setprofile)
        1    0.000    0.000    5.360    5.360 <string>:1(<module>)
        1    5.360    5.360    5.360    5.360 Learn.py:3(while_1)
        0    0.000             0.000          profile:0(profiler)
        1    0.000    0.000    5.366    5.366 profile:0(while_1())
while True执行结果:
import cProfile

def while_true():
    tag = 0
    while True:
        tag += 1
        if tag > 100000000:
            break
       
if __name__=='__main__':
    cProfile.run('while_true()')

>>> ===================================== RESTART =====================================
>>> 
         4 function calls in 8.236 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.012    0.012    0.012    0.012 :0(setprofile)
        1    0.000    0.000    8.224    8.224 <string>:1(<module>)
        1    8.224    8.224    8.224    8.224 Learn.py:10(while_true)
        0    0.000             0.000          profile:0(profiler)
        1    0.000    0.000    8.236    8.236 profile:0(while_true())
NOTE: 虽然while 1比while True,执行快些,是因为在Python中1只是True的一部分。

所有非False对象都非True,即除{},[],(),0,None,‘‘等,都是True,因此True的判断会多些,速度会慢些。

但while True这种写法可读性无疑更好些.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

求交集集合比列表快

列表测试结果:

from time import time

t1 = time()
list_1 = [32,78,65,99,19,43,18,22,7,1,9,2,4,8,56]
list_2 = [3,4,8,56,99,100]
temp   = []
for x in range(1000000):
    for i in list_2:
        for j in list_1:
            if i == j:
                temp.append(i)
t2 = time()
print "Total time:", t2 - t1

#测试结果:
>>> 
Total time: 13.6879999638
集合测试结果:
from time import time

t1 = time()
set_1 = set([32,78,65,99,19,43,18,22,7,1,9,2,4,8,56])
set_2 = set([3,4,8,56,99,100])
for x in range(1000000):
    set_same = set_1 & set_2
    
t2 = time()
print "Total time:", t2 - t1

#测试结果:
>>> 
Total time: 0.611000061035
NOTE: 用集合的方式取交集速度快的多。下面是常用的集合操作。
>>> set1 = set([2,3,4,8,9])  #集合1
>>> set2 = set([1,3,4,5,6])  #集合2
>>> set1 & set2              #求交集
set([3, 4])
>>> set1 | set2              #求合集
set([1, 2, 3, 4, 5, 6, 8, 9])
>>> set1 - set2              #求差集
set([8, 9, 2])
>>> set1 ^ set2              #求异或:即排除共同部分
set([1, 2, 5, 6, 8, 9])
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

直接交换两变量 > 借助中间变量

要交换X,Y的值,有两种方法:

1. 直接交换: X, Y = Y, X

>>> X,Y = 1,2
>>> X,Y
(1, 2)
>>> X, Y = Y, X
>>> X,Y
(2, 1)
2.借助中间变量: T = X, X = Y, Y = X
>>> X,Y = 1,2
>>> X,Y
(1, 2)
>>> T = X; X = Y; Y = T
>>> X,Y
(2, 1)
测试结果:

技术分享

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

is not速度快于!=

在if条件判断中,可以用 if a is not None:或者 if a != None 前者运行速度快于后者.

测试结果:

技术分享

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

‘‘.join(list)速度快于+或+=

+测试结果:

技术分享

‘‘.join(list)测试结果:

技术分享

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

在循环体外执行函数比在循环中快

所以要减少函数的调用次数









Python代码优化概要

标签:python

原文地址:http://blog.csdn.net/jerry_1126/article/details/41945973

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!