码迷,mamicode.com
首页 > 编程语言 > 详细

MLlib之LR算法源码学习

时间:2014-12-23 19:14:15      阅读:299      评论:0      收藏:0      [点我收藏+]

标签:


/**
* :: DeveloperApi :: * GeneralizedLinearModel (GLM) represents a model trained using * GeneralizedLinearAlgorithm. GLMs consist of a weight vector and * an intercept. * * @param weights Weights computed for every feature. * @param intercept Intercept computed for this model. */ @DeveloperApi abstract class GeneralizedLinearModel(val weights: Vector, val intercept: Double // 主构造器) extends Serializable { /** * Predict the result given a data point and the weights learned. * * @param dataMatrix Row vector containing the features for this data point * @param weightMatrix Column vector containing the weights of the model * @param intercept Intercept of the model. */ protected def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): Double // 预测所属标签 /** * Predict values for the given data set using the model trained. * * @param testData RDD representing data points to be predicted * @return RDD[Double] where each entry contains the corresponding prediction */ def predict(testData: RDD[Vector]): RDD[Double] = { // A small optimization to avoid serializing the entire model. Only the weightsMatrix // and intercept is needed. val localWeights = weights val bcWeights = testData.context.broadcast(localWeights) val localIntercept = intercept testData.mapPartitions { iter => val w = bcWeights.value //broadcast调用 read-only(类似Hadoop -》 DistributedCache) iter.map(v => predictPoint(v, w, localIntercept)) } } /** * Predict values for a single data point using the model trained. * * @param testData array representing a single data point * @return Double prediction from the trained model */ def predict(testData: Vector): Double = { predictPoint(testData, weights, intercept) } }

// 根据训练数据集得到的weights来预测新的数据点的分类

/**
 * Regression model trained using LinearRegression.
 *
 * @param weights Weights computed for every feature.
 * @param intercept Intercept computed for this model.
 */
class LinearRegressionModel (
    override val weights: Vector,
    override val intercept: Double)
  extends GeneralizedLinearModel(weights, intercept) with RegressionModel with Serializable {

  override protected def predictPoint(
      dataMatrix: Vector,
      weightMatrix: Vector,
      intercept: Double): Double = {
    weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept //两向量点乘v1 = [a1, b1], v2 = [a2, b2], v1.v2 = a1 * a2 + b1 * b2
  }
}

 

 

import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.util.NumericParser
import org.apache.spark.SparkException

/**
 * Class that represents the features and labels of a data point.
 *
 * @param label Label for this data point.
 * @param features List of features for this data point.
 */
case class LabeledPoint(label: Double, features: Vector /*主构造器*/) {
  override def toString: String = {
    "(%s,%s)".format(label, features)
  }
}

/**
 * Parser for [[org.apache.spark.mllib.regression.LabeledPoint]].
 */
object LabeledPoint {
  /**
   * Parses a string resulted from `LabeledPoint#toString` into
   * an [[org.apache.spark.mllib.regression.LabeledPoint]].
   */
  def parse(s: String): LabeledPoint = {
    if (s.startsWith("(")) {
      NumericParser.parse(s) match {
        case Seq(label: Double, numeric: Any) =>
          LabeledPoint(label, Vectors.parseNumeric(numeric))
        case other =>
          throw new SparkException(/*字符串插值*/s"Cannot parse $other.")
      }
    } 
else { // dense format used before v1.0 val parts = s.split(‘,‘) val label = java.lang.Double.parseDouble(parts(0)) val features = Vectors.dense(parts(1).trim().split(‘ ‘).map(java.lang.Double.parseDouble)) LabeledPoint(label, features) } } }

 

/**
 * :: DeveloperApi ::
 * GeneralizedLinearAlgorithm implements methods to train a Generalized Linear Model (GLM).
 * This class should be extended with an Optimizer to create a new GLM.
 */
@DeveloperApi
abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel]
  extends Logging with Serializable {

  protected val validators: Seq[RDD[LabeledPoint] => Boolean] = List()

  /** The optimizer to solve the problem. */
  def optimizer: Optimizer

  /** Whether to add intercept (default: false). */
  protected var addIntercept: Boolean = false

  protected var validateData: Boolean = true

  /**
   * Whether to perform feature scaling before model training to reduce the condition numbers
   * which can significantly help the optimizer converging faster. The scaling correction will be
   * translated back to resulting model weights, so it‘s transparent to users.
   * Note: This technique is used in both libsvm and glmnet packages. Default false.
   */
  private var useFeatureScaling = false

  /**
   * Set if the algorithm should use feature scaling to improve the convergence during optimization.
   */
  private[mllib] def setFeatureScaling(useFeatureScaling: Boolean): this.type = {
    this.useFeatureScaling = useFeatureScaling
    this
  }

  /**
   * Create a model given the weights and intercept
   */
  protected def createModel(weights: Vector, intercept: Double): M

  /**
   * Set if the algorithm should add an intercept. Default false.
   * We set the default to false because adding the intercept will cause memory allocation.
   */
  def setIntercept(addIntercept: Boolean): this.type = {
    this.addIntercept = addIntercept
    this
  }

  /**
   * Set if the algorithm should validate data before training. Default true.
   */
  def setValidateData(validateData: Boolean): this.type = {
    this.validateData = validateData
    this
  }

  /**
   * Run the algorithm with the configured parameters on an input
   * RDD of LabeledPoint entries.
   */
  def run(input: RDD[LabeledPoint]): M = {
    val numFeatures: Int = input.first().features.size
    val initialWeights = Vectors.dense(new Array[Double](numFeatures)) //初始化为0向量
    run(input, initialWeights)
  }

  /**
   * Run the algorithm with the configured parameters on an input RDD
   * of LabeledPoint entries starting from the initial weights provided.
   */
  def run(input: RDD[LabeledPoint], initialWeights: Vector): M = {

    // Check the data properties before running the optimizer
    if (validateData && !validators.forall(func => func(input))) {
      throw new SparkException("Input validation failed.")
    }

    /**
     * Scaling columns to unit variance as a heuristic to reduce the condition number:
     *
     * During the optimization process, the convergence (rate) depends on the condition number of
     * the training dataset. Scaling the variables often reduces this condition number
     * heuristically, thus improving the convergence rate. Without reducing the condition number,
     * some training datasets mixing the columns with different scales may not be able to converge.
     *
     * GLMNET and LIBSVM packages perform the scaling to reduce the condition number, and return
     * the weights in the original scale.
     * See page 9 in http://cran.r-project.org/web/packages/glmnet/glmnet.pdf
     *
     * Here, if useFeatureScaling is enabled, we will standardize the training features by dividing
     * the variance of each column (without subtracting the mean), and train the model in the
     * scaled space. Then we transform the coefficients from the scaled space to the original scale
     * as GLMNET and LIBSVM do.
     *
     * Currently, it‘s only enabled in LogisticRegressionWithLBFGS
     */
    val scaler = if (useFeatureScaling) {
      (new StandardScaler).fit(input.map(x => x.features))
    } else {
      null
    }

    // Prepend an extra variable consisting of all 1.0‘s for the intercept.
    val data = if (addIntercept) {
      if(useFeatureScaling) {
        input.map(labeledPoint =>
          (labeledPoint.label, appendBias(scaler.transform(labeledPoint.features))))
      } else {
        input.map(labeledPoint => (labeledPoint.label, /*加入惩罚函数*/appendBias(labeledPoint.features)))
      }
    } else {
      if (useFeatureScaling) {
        input.map(labeledPoint => (labeledPoint.label, scaler.transform(labeledPoint.features)))
      } else {
        input.map(labeledPoint => (labeledPoint.label, labeledPoint.features))
      }
    }

    val initialWeightsWithIntercept = if (addIntercept) {
      appendBias(initialWeights)
    } else {
      initialWeights
    }
  
//Very important
val weightsWithIntercept
= optimizer.optimize(data, initialWeightsWithIntercept) val intercept = if (addIntercept) weightsWithIntercept(weightsWithIntercept.size - 1) else 0.0 var weights = if (addIntercept) { Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) } else { weightsWithIntercept } /** * The weights and intercept are trained in the scaled space; we‘re converting them back to * the original scale. * * Math shows that if we only perform standardization without subtracting means, the intercept * will not be changed. w_i = w_i‘ / v_i where w_i‘ is the coefficient in the scaled space, w_i * is the coefficient in the original space, and v_i is the variance of the column i. */ if (useFeatureScaling) { weights = scaler.transform(weights) } createModel(weights, intercept) } }
LinearRegressionWithSGD类主要接收外部数据集、算法参数等输入进行训练得到一个逻辑回归模型LogisticRegressionModel

 接收的输入参数包括:

    input:输入数据集合,分类标签lable只能是1.0和0.0两种,feature为double类型

    numIterations:迭代次数,默认为100

    stepSize:迭代步伐大小,默认为1.0

    miniBatchFraction:每次迭代参与计算的样本比例,默认为1.0

    initialWeights:weight向量初始值,默认为0向量

/**
 * Train a linear regression model with no regularization using Stochastic Gradient Descent.
 * This solves the least squares regression formulation
 *              f(weights) = 1/n ||A weights-y||^2
 * (which is the mean squared error).
 * Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with
 * its corresponding right hand side label y.
 * See also the documentation for the precise formulation.
 */
class LinearRegressionWithSGD private[mllib] (
    private var stepSize: Double,
    private var numIterations: Int,
    private var miniBatchFraction: Double)
  extends GeneralizedLinearAlgorithm[LinearRegressionModel] with Serializable {

  private val gradient = new LeastSquaresGradient()
  private val updater = new SimpleUpdater()
  override val optimizer = new GradientDescent(gradient, updater)
    .setStepSize(stepSize)
    .setNumIterations(numIterations)
    .setMiniBatchFraction(miniBatchFraction)

  /**
   * Construct a LinearRegression object with default parameters: {stepSize: 1.0,
   * numIterations: 100, miniBatchFraction: 1.0}.
   */
  def this() = this(1.0, 100, 1.0)

  override protected[mllib] def createModel(weights: Vector, intercept: Double) = {
    new LinearRegressionModel(weights, intercept)
  }
}

/**
 * Top-level methods for calling LinearRegression.
 */
object LinearRegressionWithSGD {

  /**
   * Train a Linear Regression model given an RDD of (label, features) pairs. We run a fixed number
   * of iterations of gradient descent using the specified step size. Each iteration uses
   * `miniBatchFraction` fraction of the data to calculate a stochastic gradient. The weights used
   * in gradient descent are initialized using the initial weights provided.
   *
   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data
   *              matrix A as well as the corresponding right hand side label y
   * @param numIterations Number of iterations of gradient descent to run.
   * @param stepSize Step size to be used for each iteration of gradient descent.
   * @param miniBatchFraction Fraction of data to be used per iteration.
   * @param initialWeights Initial set of weights to be used. Array should be equal in size to
   *        the number of features in the data.
   */
  def train(
      input: RDD[LabeledPoint],
      numIterations: Int,
      stepSize: Double,
      miniBatchFraction: Double,
      initialWeights: Vector): LinearRegressionModel = {
    new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction)
      .run(input, initialWeights)
  }

  /**
   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number
   * of iterations of gradient descent using the specified step size. Each iteration uses
   * `miniBatchFraction` fraction of the data to calculate a stochastic gradient.
   *
   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data
   *              matrix A as well as the corresponding right hand side label y
   * @param numIterations Number of iterations of gradient descent to run.
   * @param stepSize Step size to be used for each iteration of gradient descent.
   * @param miniBatchFraction Fraction of data to be used per iteration.
   */
  def train(
      input: RDD[LabeledPoint],
      numIterations: Int,
      stepSize: Double,
      miniBatchFraction: Double): LinearRegressionModel = {
    new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction).run(input)
  }

  /**
   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number
   * of iterations of gradient descent using the specified step size. We use the entire data set to
   * compute the true gradient in each iteration.
   *
   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data
   *              matrix A as well as the corresponding right hand side label y
   * @param stepSize Step size to be used for each iteration of Gradient Descent.
   * @param numIterations Number of iterations of gradient descent to run.
   * @return a LinearRegressionModel which has the weights and offset from training.
   */
  def train(
      input: RDD[LabeledPoint],
      numIterations: Int,
      stepSize: Double): LinearRegressionModel = {
    train(input, numIterations, stepSize, 1.0)
  }

  /**
   * Train a LinearRegression model given an RDD of (label, features) pairs. We run a fixed number
   * of iterations of gradient descent using a step size of 1.0. We use the entire data set to
   * compute the true gradient in each iteration.
   *
   * @param input RDD of (label, array of features) pairs. Each pair describes a row of the data
   *              matrix A as well as the corresponding right hand side label y
   * @param numIterations Number of iterations of gradient descent to run.
   * @return a LinearRegressionModel which has the weights and offset from training.
   */
  def train(
      input: RDD[LabeledPoint],
      numIterations: Int): LinearRegressionModel = {
    train(input, numIterations, 1.0, 1.0)
  }
}
(梯度下降 or
最小二乘法求导,计算梯度)

/**
* :: DeveloperApi :: * Class used to compute the gradient for a loss function, given a single data point. */ @DeveloperApi abstract class Gradient extends Serializable { /** * Compute the gradient and loss given the features of a single data point. * * @param data features for one data point * @param label label for this data point * @param weights weights/coefficients corresponding to features * * @return (gradient: Vector, loss: Double) */ def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) /** * Compute the gradient and loss given the features of a single data point, * add the gradient to a provided vector to avoid creating new objects, and return loss. * * @param data features for one data point * @param label label for this data point * @param weights weights/coefficients corresponding to features * @param cumGradient the computed gradient will be added to this vector * * @return loss */ def compute(data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double } /** * :: DeveloperApi :: * Compute gradient and loss for a logistic loss function, as used in binary classification. * See also the documentation for the precise formulation. */ @DeveloperApi class LogisticGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val margin = -1.0 * dot(data, weights) val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label val gradient = data.copy scal(gradientMultiplier, gradient) val loss = if (label > 0) { math.log1p(math.exp(margin)) // log1p is log(1+p) but more accurate for small p } else { math.log1p(math.exp(margin)) - margin } (gradient, loss) } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val margin = -1.0 * dot(data, weights) val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label axpy(gradientMultiplier, data, cumGradient) if (label > 0) { math.log1p(math.exp(margin)) } else { math.log1p(math.exp(margin)) - margin } } } /** * :: DeveloperApi :: * Compute gradient and loss for a Least-squared loss function, as used in linear regression. * This is correct for the averaged least squares loss function (mean squared error) * L = 1/n ||A weights-y||^2 * See also the documentation for the precise formulation. */ @DeveloperApi class LeastSquaresGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val diff = dot(data, weights) - label val loss = diff * diff val gradient = data.copy scal(2.0 * diff, gradient) (gradient, loss) } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val diff = dot(data, weights) - label axpy(2.0 * diff, data, cumGradient) diff * diff } } /** * :: DeveloperApi :: * Compute gradient and loss for a Hinge loss function, as used in SVM binary classification. * See also the documentation for the precise formulation. * NOTE: This assumes that the labels are {0,1} */ @DeveloperApi class HingeGradient extends Gradient { override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { val dotProduct = dot(data, weights) // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) { val gradient = data.copy scal(-labelScaled, gradient) (gradient, 1.0 - labelScaled * dotProduct) } else { (Vectors.sparse(weights.size, Array.empty, Array.empty), 0.0) } } override def compute( data: Vector, label: Double, weights: Vector, cumGradient: Vector): Double = { val dotProduct = dot(data, weights) // Our loss function with {0, 1} labels is max(0, 1 - (2y – 1) (f_w(x))) // Therefore the gradient is -(2y - 1)*x val labelScaled = 2 * label - 1.0 if (1.0 > labelScaled * dotProduct) { axpy(-labelScaled, data, cumGradient) 1.0 - labelScaled * dotProduct } else { 0.0 } } }

 

Updater类负责weight的迭代更新计算,包含了SimpleUpdater、L1Updater、SquaredL2Update
/**
 * :: DeveloperApi ::
 * Class used to perform steps (weight update) using Gradient Descent methods.
 *
 * For general minimization problems, or for regularized problems of the form
 *         min  L(w) + regParam * R(w),
 * the compute function performs the actual update step, when given some
 * (e.g. stochastic) gradient direction for the loss L(w),
 * and a desired step-size (learning rate).
 *
 * The updater is responsible to also perform the update coming from the
 * regularization term R(w) (if any regularization is used).
 */
@DeveloperApi
abstract class Updater extends Serializable {
  /**
   * Compute an updated value for weights given the gradient, stepSize, iteration number and
   * regularization parameter. Also returns the regularization value regParam * R(w)
   * computed using the *updated* weights.
   *
   * @param weightsOld - Column matrix of size dx1 where d is the number of features.
   * @param gradient - Column matrix of size dx1 where d is the number of features.
   * @param stepSize - step size across iterations
   * @param iter - Iteration number
   * @param regParam - Regularization parameter
   *
   * @return A tuple of 2 elements. The first element is a column matrix containing updated weights,
   *         and the second element is the regularization value computed using updated weights.
   */
  def compute(
      weightsOld: Vector,
      gradient: Vector,
      stepSize: Double,
      iter: Int,
      regParam: Double): (Vector, Double)
}

/**
 * :: DeveloperApi ::
 * A simple updater for gradient descent *without* any regularization.
 * Uses a step-size decreasing with the square root of the number of iterations.
 */
@DeveloperApi
class SimpleUpdater extends Updater {
  override def compute(
      weightsOld: Vector,
      gradient: Vector,
      stepSize: Double,
      iter: Int,
      regParam: Double): (Vector, Double) = {
    val thisIterStepSize = stepSize / math.sqrt(iter)
    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)

    (Vectors.fromBreeze(brzWeights), 0)
  }
}

/**
 * :: DeveloperApi ::
 * Updater for L1 regularized problems.
 *          R(w) = ||w||_1
 * Uses a step-size decreasing with the square root of the number of iterations.

 * Instead of subgradient of the regularizer, the proximal operator for the
 * L1 regularization is applied after the gradient step. This is known to
 * result in better sparsity of the intermediate solution.
 *
 * The corresponding proximal operator for the L1 norm is the soft-thresholding
 * function. That is, each weight component is shrunk towards 0 by shrinkageVal.
 *
 * If w >  shrinkageVal, set weight component to w-shrinkageVal.
 * If w < -shrinkageVal, set weight component to w+shrinkageVal.
 * If -shrinkageVal < w < shrinkageVal, set weight component to 0.
 *
 * Equivalently, set weight component to signum(w) * max(0.0, abs(w) - shrinkageVal)
 */
@DeveloperApi
class L1Updater extends Updater {
  override def compute(
      weightsOld: Vector,
      gradient: Vector,
      stepSize: Double,
      iter: Int,
      regParam: Double): (Vector, Double) = {
    val thisIterStepSize = stepSize / math.sqrt(iter)
    // Take gradient step
    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
    // Apply proximal operator (soft thresholding)
    val shrinkageVal = regParam * thisIterStepSize
    var i = 0
    while (i < brzWeights.length) {
      val wi = brzWeights(i)
      brzWeights(i) = signum(wi) * max(0.0, abs(wi) - shrinkageVal)
      i += 1
    }

    (Vectors.fromBreeze(brzWeights), brzNorm(brzWeights, 1.0) * regParam)
  }
}

/**
 * :: DeveloperApi ::
 * Updater for L2 regularized problems.
 *          R(w) = 1/2 ||w||^2
 * Uses a step-size decreasing with the square root of the number of iterations.
 */
@DeveloperApi
class SquaredL2Updater extends Updater {
  override def compute(
      weightsOld: Vector,
      gradient: Vector,
      stepSize: Double,
      iter: Int,
      regParam: Double): (Vector, Double) = {
    // add up both updates from the gradient of the loss (= step) as well as
    // the gradient of the regularizer (= regParam * weightsOld)
    // w‘ = w - thisIterStepSize * (gradient + regParam * w)
    // w‘ = (1 - thisIterStepSize * regParam) * w - thisIterStepSize * gradient
    val thisIterStepSize = stepSize / math.sqrt(iter)
    val brzWeights: BV[Double] = weightsOld.toBreeze.toDenseVector
    brzWeights :*= (1.0 - thisIterStepSize * regParam)
    brzAxpy(-thisIterStepSize, gradient.toBreeze, brzWeights)
    val norm = brzNorm(brzWeights, 2.0)

    (Vectors.fromBreeze(brzWeights), 0.5 * regParam * norm * norm)
  }
}

 

 

/**
 * :: DeveloperApi ::
 * Trait for optimization problem solvers.
 */
@DeveloperApi
trait Optimizer extends Serializable {

  /**
   * Solve the provided convex optimization problem.
   */
  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector
}

 

GradientDescent(梯度下降算法)
/**
 * Class used to solve an optimization problem using Gradient Descent.
 * @param gradient Gradient function to be used.
 * @param updater Updater to be used to update weights after every iteration.
 */
class GradientDescent private[mllib] (private var gradient: Gradient, private var updater: Updater)
  extends Optimizer with Logging {

  private var stepSize: Double = 1.0
  private var numIterations: Int = 100
  private var regParam: Double = 0.0
  private var miniBatchFraction: Double = 1.0

  /**
   * Set the initial step size of SGD for the first step. Default 1.0.
   * In subsequent steps, the step size will decrease with stepSize/sqrt(t)
   */
  def setStepSize(step: Double): this.type = {
    this.stepSize = step
    this
  }

  /**
   * :: Experimental ::
   * Set fraction of data to be used for each SGD iteration.
   * Default 1.0 (corresponding to deterministic/classical gradient descent)
   */
  @Experimental
  def setMiniBatchFraction(fraction: Double): this.type = {
    this.miniBatchFraction = fraction
    this
  }

  /**
   * Set the number of iterations for SGD. Default 100.
   */
  def setNumIterations(iters: Int): this.type = {
    this.numIterations = iters
    this
  }

  /**
   * Set the regularization parameter. Default 0.0.
   */
  def setRegParam(regParam: Double): this.type = {
    this.regParam = regParam
    this
  }

  /**
   * Set the gradient function (of the loss function of one single data example)
   * to be used for SGD.
   */
  def setGradient(gradient: Gradient): this.type = {
    this.gradient = gradient
    this
  }


  /**
   * Set the updater function to actually perform a gradient step in a given direction.
   * The updater is responsible to perform the update from the regularization term as well,
   * and therefore determines what kind or regularization is used, if any.
   */
  def setUpdater(updater: Updater): this.type = {
    this.updater = updater
    this
  }

  /**
   * :: DeveloperApi ::
   * Runs gradient descent on the given training data.
   * @param data training data
   * @param initialWeights initial weights
   * @return solution vector
   */
  @DeveloperApi
  def optimize(data: RDD[(Double, Vector)], initialWeights: Vector): Vector = {
    val (weights, _) = GradientDescent.runMiniBatchSGD(
      data,
      gradient,
      updater,
      stepSize,
      numIterations,
      regParam,
      miniBatchFraction,
      initialWeights)
    weights
  }

}

/**
 * :: DeveloperApi ::
 * Top-level method to run gradient descent.
 */
@DeveloperApi
object GradientDescent extends Logging {
  /**
   * Run stochastic gradient descent (SGD) in parallel using mini batches.
   * In each iteration, we sample a subset (fraction miniBatchFraction) of the total data
   * in order to compute a gradient estimate.
   * Sampling, and averaging the subgradients over this subset is performed using one standard
   * spark map-reduce in each iteration.
   *
   * @param data - Input data for SGD. RDD of the set of data examples, each of
   *               the form (label, [feature values]).
   * @param gradient - Gradient object (used to compute the gradient of the loss function of
   *                   one single data example)
   * @param updater - Updater function to actually perform a gradient step in a given direction.
   * @param stepSize - initial step size for the first step
   * @param numIterations - number of iterations that SGD should be run.
   * @param regParam - regularization parameter
   * @param miniBatchFraction - fraction of the input data set that should be used for
   *                            one iteration of SGD. Default value 1.0.
   *
   * @return A tuple containing two elements. The first element is a column matrix containing
   *         weights for every feature, and the second element is an array containing the
   *         stochastic loss computed for every iteration.
   */
  def runMiniBatchSGD(
      data: RDD[(Double, Vector)],
      gradient: Gradient,
      updater: Updater,
      stepSize: Double,
      numIterations: Int,
      regParam: Double,
      miniBatchFraction: Double,
      initialWeights: Vector): (Vector, Array[Double]) = {

    val stochasticLossHistory = new ArrayBuffer[Double](numIterations)

    val numExamples = data.count()
    val miniBatchSize = numExamples * miniBatchFraction

    // if no data, return initial weights to avoid NaNs
    if (numExamples == 0) {

      logInfo("GradientDescent.runMiniBatchSGD returning initial weights, no data found")
      return (initialWeights, stochasticLossHistory.toArray)

    }

    // Initialize weights as a column vector
    var weights = Vectors.dense(initialWeights.toArray)
    val n = weights.size

    /**
     * For the first iteration, the regVal will be initialized as sum of weight squares
     * if it‘s L2 updater; for L1 updater, the same logic is followed.
     */
    var regVal = updater.compute(
      weights, Vectors.dense(new Array[Double](weights.size)), 0, 1, regParam)._2

    for (i <- 1 to numIterations) {
      val bcWeights = data.context.broadcast(weights)
      // Sample a subset (fraction miniBatchFraction) of the total data
      // compute and sum up the subgradients on this subset (this is one map-reduce)
      val (gradientSum, lossSum) = data.sample(false, miniBatchFraction, 42 + i)
        .treeAggregate((BDV.zeros[Double](n), 0.0))(
          seqOp = (c, v) => (c, v) match { case ((grad, loss), (label, features)) =>
            val l = gradient.compute(features, label, bcWeights.value, Vectors.fromBreeze(grad))
            (grad, loss + l)
          },
          combOp = (c1, c2) => (c1, c2) match { case ((grad1, loss1), (grad2, loss2)) =>
            (grad1 += grad2, loss1 + loss2)
          })

      /**
       * NOTE(Xinghao): lossSum is computed using the weights from the previous iteration
       * and regVal is the regularization value computed in the previous iteration as well.
       */
      stochasticLossHistory.append(lossSum / miniBatchSize + regVal)
      val update = updater.compute(
        weights, Vectors.fromBreeze(gradientSum / miniBatchSize), stepSize, i, regParam)
      weights = update._1
      regVal = update._2
    }

    logInfo("GradientDescent.runMiniBatchSGD finished. Last 10 stochastic losses %s".format(
      stochasticLossHistory.takeRight(10).mkString(", ")))

    (weights, stochasticLossHistory.toArray)

  }
}

 

 

 

 

MLlib之LR算法源码学习

标签:

原文地址:http://www.cnblogs.com/likai198981/p/4180633.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!