标签:
本文发表于本人博客。
今天继续写练习题,上次对分区稍微理解了一下,那根据那个步骤分区、排序、分组、规约来的话,今天应该是要写个排序有关的例子了,那好现在就开始!
说到排序我们可以查看下hadoop源码里面的WordCount例子中对LongWritable类型定义,它实现抽象接口WritableComparable,代码如下:
public interface WritableComparable<T> extends Writable, Comparable<T> { } public interface Writable { void write(DataOutput out) throws IOException; void readFields(DataInput in) throws IOException; }
其中Writable抽象接口定义了write以及readFields方法,分别是写入数据流以及读取数据流。而Comparable中又有compareTo方法定义比较。竟然hadoop的内置类型有比较大小功能,那么它使用这个内置类型作为map端输出的话是怎么样去排序的,这个问题我们先来查看下map任务类MapTask源代码,内部有内置MapOutputBuffer类,在spill accounting注释下面有个排序字段:
private final IndexedSorter sorter;
这个字段是由:
sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class", QuickSort.class, IndexedSorter.class), job);
可以看出,这个排序算法可以在配置文件中指定,不过默认是快速排序QuickSort。这个QuickSort内部有几个重要的方法:
public void sort(final IndexedSortable s, int p, int r,final Progressable rep); private static void sortInternal(final IndexedSortable s, int p, int r,final Progressable rep, int depth);
其中在传递参数IndexSortable的时候是用MapOutputBuffer当前来传递,因为这个MapOutputBuffer也继承IndexedSortable.这样在QuickSort排序sort中就会使用MapOutputBuffer类中的compare方法进行比较,可以看下面源代码:
public int compare(int i, int j) { final int ii = kvoffsets[i % kvoffsets.length]; final int ij = kvoffsets[j % kvoffsets.length]; // sort by partition if (kvindices[ii + PARTITION] != kvindices[ij + PARTITION]) { return kvindices[ii + PARTITION] - kvindices[ij + PARTITION]; } // sort by key return comparator.compare(kvbuffer, kvindices[ii + KEYSTART], kvindices[ii + VALSTART] - kvindices[ii + KEYSTART], kvbuffer, kvindices[ij + KEYSTART], kvindices[ij + VALSTART] - kvindices[ij + KEYSTART]); }
然而这个方法中comparator默认是由节点“mapred.output.key.comparator.class”决定,也可以看源码:
public RawComparator getOutputKeyComparator() { Class<? extends RawComparator> theClass = getClass("mapred.output.key.comparator.class", null, RawComparator.class); if (theClass != null) return ReflectionUtils.newInstance(theClass, this); return WritableComparator.get(getMapOutputKeyClass().asSubclass(WritableComparable.class)); }
就是这样把排序以及比较方法关联起来了!那现在我们可以按照LongWritable的思路实现自己的自定义类型并且读取、写入、比较。下面写写代码加深下记忆,既然是排序那我们准备下数据,如下有2列数据要求按照第一列升序,第二列降序排序:
1 2 1 1 3 0 3 2 2 2 1 2
先自定义类型SortAPI:
public class SortAPI implements WritableComparable<SortAPI> { /** * 第一列数据 */ public Long first; /** * 第二列数据 */ public Long second; public SortAPI(){} public SortAPI(long first,long second){ this.first = first; this.second = second; } /** * 排序就在这里当:this.first - o.first > 0 升序,小于0倒序 */ @Override public int compareTo(SortAPI o) { long mis = (this.first - o.first); if(mis != 0 ){ return (int)mis; } else{ return (int)(this.second - o.second); } } @Override public void write(DataOutput out) throws IOException { out.writeLong(first); out.writeLong(second); } @Override public void readFields(DataInput in) throws IOException { this.first = in.readLong(); this.second = in.readLong(); } @Override public int hashCode() { return this.first.hashCode() + this.second.hashCode(); } @Override public boolean equals(Object obj) { if(obj instanceof SortAPI){ SortAPI o = (SortAPI)obj; return this.first == o.first && this.second == o.second; } return false; } @Override public String toString() { return "first:" + this.first + "second:" + this.second; } }
这类型重写compareTo(SortAPI o)、write(DataOutput out)、readFields(DataInput in),既然是有比较那么以前说的就一定要重写hashCode()、equals(Object obj)方法了,这点不要忘记!还需要主要在write方法以及readFields方法中读写是有顺序:先write什么字段就先read什么字段。其次这个compareTo(SortAPI o)方法中返回是整型大于0、0、以及小于0代表大于、等于、小于。至于怎么判断2行数据是不是相等,不相等怎么比较着逻辑可以慢慢看下。
下面写个自定义Mapper、Reducer类以及main函数:
public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> { @Override protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException { String[] splied = value.toString().split("\t"); try { long first = Long.parseLong(splied[0]); long second = Long.parseLong(splied[1]); context.write(new SortAPI(first,second), new LongWritable(1)); } catch (Exception e) { System.out.println(e.getMessage()); } } }
public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> { @Override protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { context.write(new LongWritable(key.first), new LongWritable(key.second)); } }
static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/sort/output/"; static final String INPUT_DIR = "hdfs://hadoop-master:9000/sort/input/test.txt"; public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf, Test.class.getSimpleName()); deleteOutputFile(OUTPUT_DIR); //1设置输入目录 FileInputFormat.setInputPaths(job, INPUT_DIR); //2设置输入格式化类 job.setInputFormatClass(TextInputFormat.class); //3设置自定义Mapper以及键值类型 job.setMapperClass(MyMapper.class); job.setMapOutputKeyClass(SortAPI.class); job.setMapOutputValueClass(LongWritable.class); //4分区 job.setPartitionerClass(HashPartitioner.class); job.setNumReduceTasks(1); //5排序分组 //6设置在一定Reduce以及键值类型 job.setReducerClass(MyReduce.class); job.setOutputKeyClass(LongWritable.class); job.setOutputValueClass(LongWritable.class); //7设置输出目录 FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR)); //8提交job job.waitForCompletion(true); } static void deleteOutputFile(String path) throws Exception{ Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf); if(fs.exists(new Path(path))){ fs.delete(new Path(path)); } }
这样在eclipse下就可以直接运行查看结果:
1 1 1 2 2 2 3 0 3 2
这结果正确,那如果要求第一列倒叙第二列升序呢,怎么办,这只需要修改下compareTo(SortAPI o):
@Override public int compareTo(SortAPI o) { long mis = (this.first - o.first) * -1 ; if(mis != 0 ){ return (int)mis; } else{ return (int)(this.second - o.second); } }
这样保存在运行,结果:
3 0 3 2 2 2 1 1 1 2
也正确吧符合自己的这个要求。
留个小问题:这个compareTo(SortAPI o)方法在什么时候调用了,总共调用了几次?
这次先到这里。坚持记录点点滴滴!
Hadoop mapreduce自定义排序WritableComparable
标签:
原文地址:http://www.cnblogs.com/luoliang/p/4186650.html