标签:divide and conquer dynamic programming leetcode array
题目:Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [?2,1,?3,4,?1,2,1,?5,4]
,
the contiguous subarray [4,?1,2,1]
has the largest sum = 6
.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Anwser 1: Kadane算法
思路:把数组里元素不断往结果里添加,直到sum的值小于0,这时将sum重置为0,同时始终维护一个ans变量,表示子串的和最大值(会获得添加过程中的最大值)。
Attention:
1.sum添加必须从A[0]开始,如果A[0]是负值,则舍弃。
2.判断sum 低于0,则重置0
sum = max(sum, 0);
3.顺序很重要,先比较得到一个较大值,再看是否需重置sum. 维护ans是数组内最大和。
ret = max(ret, sum); //只把大于0的添加进子序列。 sum = max(sum, 0);
复杂度:O(N)
AC Code:
class Solution { public: int maxSubArray(int A[], int n) { //Idea is very simple. Basically, keep adding each integer to the sequence until the sum drops below 0. If sum is negative, then should reset the sequence. int ret = A[0]; int sum = 0; for(int i = 0; i < n; i++) { //必须从A[0]开始加,如果A[0]小于0,则后面判断时舍去A[0] sum += A[i]; ret = max(ret, sum); //只把大于0的添加进子序列。 sum = max(sum, 0); } return ret; } };
分治法:最大子串和的区间有以下三种情况(low,high分别为左右边界,mid为(low+high)/2):
(1) 区间完全在 A[low,mid-1]
(2) 区间完全在 A[mid+1,high]
(3) 区间包含有 A[mid]
按照这三种情况一直递归下去即可。
Step:
1. 找到数组中间元素,最大子串可能包含或者不包含中间元素。
2. 分开计算
2.1 如果不包含中间元素,继续在A[low,mid-1] 和 A[mid+1,high]用相同算法查找最大和子串。
2.2 如果包含,则最大子串,将包含左串的最大后缀和右串的最大前缀
3. 返回三个结果的最大值。
Attention:
1. 注意如何计算最大左后缀和最大右前缀。
2. 注意递归求解左区间和右区间时的范围。
//计算左区间和右区间 int leftans = maxSubArray_helper(A, left, middle); int rightans = maxSubArray_helper(A, middle+1, right);3. 注意递归终止条件。
if(left == right) return A[left];
4. 包含全部元素比较好考虑,不会落下一些值。把middle加入左区间中。
复杂度:O(Nlog(n))
AC Code:
class Solution { public: int maxSubArray(int A[], int n) { if(n == 0) return 0; maxSubArray_helper(A, 0, n-1); } int maxSubArray_helper(int A[], int left, int right) { if(left == right) return A[left]; int middle = left + (right - left)/2; //计算左区间和右区间 int leftans = maxSubArray_helper(A, left, middle); int rightans = maxSubArray_helper(A, middle+1, right); //计算含中间元素的区间 int leftmax = A[middle]; int rightmax = A[middle+1]; int tmp = 0; for(int i = middle; i >= left; i--) { tmp += A[i]; leftmax = max(leftmax, tmp); } tmp = 0; for(int i = middle+1; i <= right; i++) { tmp += A[i]; rightmax = max(rightmax, tmp); } return max(max(leftans, rightans), leftmax + rightmax); } };
[C++]LeetCode: 58 Maximum Subarray
标签:divide and conquer dynamic programming leetcode array
原文地址:http://blog.csdn.net/cinderella_niu/article/details/42212765