标签:
习题的链接:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder
我的实现:
sampleIMAGES.m
function patches = sampleIMAGES() % sampleIMAGES % Returns 10000 patches for training load IMAGES; % load images from disk patchsize = 8; % we‘ll use 8x8 patches numpatches = 10000; % Initialize patches with zeros. Your code will fill in this matrix--one % column per patch, 10000 columns. patches = zeros(patchsize*patchsize, numpatches); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Fill in the variable called "patches" using data % from IMAGES. % % IMAGES is a 3D array containing 10 images % For instance, IMAGES(:,:,6) is a 512x512 array containing the 6th image, % and you can type "imagesc(IMAGES(:,:,6)), colormap gray;" to visualize % it. (The contrast on these images look a bit off because they have % been preprocessed using using "whitening." See the lecture notes for % more details.) As a second example, IMAGES(21:30,21:30,1) is an image % patch corresponding to the pixels in the block (21,21) to (30,30) of % Image 1 for i=1:numpatches %randomly pick one of the 10 images ind = round(rand(1)*9)+1; %[0~9]+1=[1,10] %randomly sample an 8×8 image patch startx = round(rand(1)*504)+1; %[0~504]+1=[1,505] starty = round(rand(1)*504)+1; tempPatch = IMAGES(startx:startx+patchsize-1,starty:starty+patchsize-1,ind); %convert the image patch into a 64-dimensional vector tempVec = reshape(tempPatch, patchsize*patchsize, 1); patches(:,i) = tempVec; end %% --------------------------------------------------------------- % For the autoencoder to work well we need to normalize the data % Specifically, since the output of the network is bounded between [0,1] % (due to the sigmoid activation function), we have to make sure % the range of pixel values is also bounded between [0,1] patches = normalizeData(patches); end %% --------------------------------------------------------------- function patches = normalizeData(patches) % Squash data to [0.1, 0.9] since we use sigmoid as the activation % function in the output layer % Remove DC (mean of images). patches = bsxfun(@minus, patches, mean(patches)); % Truncate to +/-3 standard deviations and scale to -1 to 1 pstd = 3 * std(patches(:)); patches = max(min(patches, pstd), -pstd) / pstd; % Rescale from [-1,1] to [0.1,0.9] patches = (patches + 1) * 0.4 + 0.1; end
computeNumericalGradient.m
function numgrad = computeNumericalGradient(J, theta) % numgrad = computeNumericalGradient(J, theta) % theta: a vector of parameters % J: a function that outputs a real-number. Calling y = J(theta) will return the % function value at theta. % Initialize numgrad with zeros numgrad = zeros(size(theta)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: % Implement numerical gradient checking, and return the result in numgrad. % (See Section 2.3 of the lecture notes.) % You should write code so that numgrad(i) is (the numerical approximation to) the % partial derivative of J with respect to the i-th input argument, evaluated at theta. % I.e., numgrad(i) should be the (approximately) the partial derivative of J with % respect to theta(i). % % Hint: You will probably want to compute the elements of numgrad one at a time. % The function aims to check whether W1grad&W2grad&b1grad&b2grad in % sparseAutoencoderCost have been computed correctly. %theta(i) denotes i_th parameter length = size(theta,1); EPSILON = 1e-4; E = eye(length); for i=1:length numgrad(i)=(J(theta + EPSILON*E(:,i)) - J(theta - EPSILON*E(:,i)))/(2*EPSILON); end %% --------------------------------------------------------------- end
sparseAutoencoderCost.m
function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ... lambda, sparsityParam, beta, data) % visibleSize: the number of input units (probably 64) % hiddenSize: the number of hidden units (probably 25) % lambda: weight decay parameter % sparsityParam: The desired average activation for the hidden units (denoted in the lecture % notes by the greek alphabet rho, which looks like a lower-case "p"). % beta: weight of sparsity penalty term % data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example. % The input theta is a vector (because minFunc expects the parameters to be a vector). % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this % follows the notation convention of the lecture notes. % W1(i,j) denotes the weight from j_th node in input layer to i_th node % in hidden layer. Thus it is a hiddenSize*visibleSize matrix W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize); % W2(i,j) denotes the weight from j_th node in hidden layer to i_th node % in output layer. Thus it is a visibleSize*hiddenSize matrix W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize); % b1(i) denotes the i_th bias in input layer to i_th node in hidden layer. % Thus it is a hiddenSize*1 vector b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); % b2(i) denotes the i_th bias in hidden layer to i_th node in output layer. % Thus it is a visibleSize*1 vector b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder, % and the corresponding gradients W1grad, W2grad, b1grad, b2grad. % % W1grad, W2grad, b1grad and b2grad should be computed using backpropagation. % Note that W1grad has the same dimensions as W1, b1grad has the same dimensions % as b1, etc. Your code should set W1grad to be the partial derivative of J_sparse(W,b) with % respect to W1. I.e., W1grad(i,j) should be the partial derivative of J_sparse(W,b) % with respect to the input parameter W1(i,j). Thus, W1grad should be equal to the term % [(1/m) \Delta W^{(1)} + \lambda W^{(1)}] in the last block of pseudo-code in Section 2.2 % of the lecture notes (and similarly for W2grad, b1grad, b2grad). % % Stated differently, if we were using batch gradient descent to optimize the parameters, % the gradient descent update to W1 would be W1 := W1 - alpha * W1grad, and similarly for W2, b1, b2. % % 1. Set \Delta W^{(1)}, \Delta b^{(1)} to 0 for all layer l % Cost and gradient variables (your code needs to compute these values). % Here, we initialize them to zeros. cost = 0; rho = zeros(hiddenSize,1); W1grad = zeros(size(W1)); W2grad = zeros(size(W2)); b1grad = zeros(size(b1)); b2grad = zeros(size(b2)); % 2.For i=1 to m m = size(data,2); %{ For Big-data, which we cannot save activation information for all nodes % Compute rho before backpropagation for i=1:m x = data(:,i); z2 = W1 * x + b1; a2 = sigmoid(z2); % Accumulate rho rho = rho + a2; end rho = rho ./ m; KLterm = beta*(-sparsityParam ./ rho + (1-sparsityParam) ./ (1-rho)); for i=1:m x = data(:,i); % 2a. Use backpropagation to compute diff(J_sparse(W,b;x,y), W^{(1)}) % and diff(J_sparse(W,b;x,y), b^{(1)}) % 2a.1. Perform a feedforward pass, computing the activations for % hidden layer and output layer. z2 = W1 * x + b1; a2 = sigmoid(z2); z3 = W2 * a2 + b2; a3 = sigmoid(z3); % Accumulate the cost cost = cost + 1/2 * ((x-a3)‘*(x-a3)); % 2a.2. For the output layer, set delta3 % delta3 is a visibleSize*1 vector delta3 = -(x-a3) .* sigmoidDiff(z3); % 2a.3. For the hidden layer, set delta2 % delta2 is a hiddenSize*1 vector delta2 = (W2‘*delta3 + KLterm) .* sigmoidDiff(z2); % 2a.4. Compute the desired partial derivatives JW1diff = delta2 * x‘; Jb1diff = delta2; JW2diff = delta3 * a2‘; Jb2diff = delta3; % 2b. Update \Delta W^{(1)} W1grad = W1grad + JW1diff; W2grad = W2grad + JW2diff; % 2c. Update \Delta b^{(1)} b1grad = b1grad + Jb1diff; b2grad = b2grad + Jb2diff; end % Compute KL penalty term KLpen = beta * sum(sparsityParam*log(sparsityParam ./ rho) + (1-sparsityParam)*log((1-sparsityParam) ./ (1-rho))); % Compute weight decay term tempW1 = W1 .* W1; tempW2 = W2 .* W2; WD = (lambda/2)*(sum(sum(tempW1))+sum(sum(tempW2))); cost = cost ./ m + WD + KLpen; W1grad = W1grad ./ m + lambda .* W1; W2grad = W2grad ./ m + lambda .* W2; b1grad = b1grad ./ m; b2grad = b2grad ./ m; %} % For small data, save activation information during computing rho z2_all = zeros(hiddenSize, m); a2_all = zeros(hiddenSize, m); z3_all = zeros(visibleSize, m); a3_all = zeros(visibleSize, m); for i=1:m x = data(:,i); z2_all(:,i) = W1 * x + b1; a2_all(:,i) = sigmoid(z2_all(:,i)); z3_all(:,i) = W2 * a2_all(:,i) + b2; a3_all(:,i) = sigmoid(z3_all(:,i)); % Accumulate rho rho = rho + a2_all(:,i); end rho = rho ./ m; KLterm = beta*(-sparsityParam ./ rho + (1-sparsityParam) ./ (1-rho)); for i=1:m x = data(:,i); % 2a. Use backpropagation to compute diff(J_sparse(W,b;x,y), W^{(1)}) % and diff(J_sparse(W,b;x,y), b^{(1)}) % 2a.1. Perform a feedforward pass, computing the activations for % hidden layer and output layer. z2 = z2_all(:,i); a2 = a2_all(:,i); z3 = z3_all(:,i); a3 = a3_all(:,i); % Accumulate the cost cost = cost + 1/2 * ((x-a3)‘*(x-a3)); % 2a.2. For the output layer, set delta3 % delta3 is a visibleSize*1 vector delta3 = -(x-a3) .* sigmoidDiff(z3); % 2a.3. For the hidden layer, set delta2 % delta2 is a hiddenSize*1 vector delta2 = (W2‘*delta3 + KLterm) .* sigmoidDiff(z2); % 2a.4. Compute the desired partial derivatives JW1diff = delta2 * x‘; Jb1diff = delta2; JW2diff = delta3 * a2‘; Jb2diff = delta3; % 2b. Update \Delta W^{(1)} W1grad = W1grad + JW1diff; W2grad = W2grad + JW2diff; % 2c. Update \Delta b^{(1)} b1grad = b1grad + Jb1diff; b2grad = b2grad + Jb2diff; end % Compute KL penalty term KLpen = beta * sum(sparsityParam*log(sparsityParam ./ rho) + (1-sparsityParam)*log((1-sparsityParam) ./ (1-rho))); % Compute weight decay term tempW1 = W1 .* W1; tempW2 = W2 .* W2; WD = (lambda/2)*(sum(sum(tempW1))+sum(sum(tempW2))); cost = cost ./ m + WD + KLpen; W1grad = W1grad ./ m + lambda .* W1; W2grad = W2grad ./ m + lambda .* W2; b1grad = b1grad ./ m; b2grad = b2grad ./ m; %------------------------------------------------------------------- % 3.Update the parametersAfter computing the cost and gradient, we will % convert the gradients back to a vector format (suitable for minFunc). % Specifically, we will unroll your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end %------------------------------------------------------------------- % Here‘s an implementation of the sigmoid function, which you may find useful % in your computation of the costs and the gradients. This inputs a (row or % column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end % define the differential of sigmoid function sigmDiff = sigmoidDiff(x) sigmDiff = sigmoid(x) .* (1-sigmoid(x)); end
最终训练结果:
【DeepLearning】Exercise:Sparse Autoencoder
标签:
原文地址:http://www.cnblogs.com/ganganloveu/p/4193928.html