码迷,mamicode.com
首页 > 编程语言 > 详细

对分查找算法及实现

时间:2015-01-02 22:17:22      阅读:319      评论:0      收藏:0      [点我收藏+]

标签:

二分查找算法基本思想
二分查找算法 的前置条件是,一个已经排序好的序列(在本篇文章中为了说明问题的方便,假设这个序列是升序排列的),这样在查找所要查找的元素时,首先与序列中间的元素 进行比较,如果大于这个元素,就在当前序列的后半部分继续查找,如果小于这个元素,就在当前序列的前半部分继续查找,直到找到相同的元素,或者所查找的序 列范围为空为止.

/* 二分查找
 * 算法思想:1、将数组排序(从小到大);2、每次跟中间的数mid比较,如果相等可以直接返回,
 * 如果比mid大则继续查找大的一边,否则继续查找小的一边。

  输入:排序好的数组 - sSource[],数组大小 - array_size,查找的值 - key
  返回:找到返回相应的位置,否则返回-1
*/
int BinSearch(int sSource[], int array_size, int key)
{    
    int low = 0, high = array_size - 1, mid;
    
    while (low <= high)
    {        
        mid = (low + high) / 2;//获取中间的位置
        
        if (sSource[mid] == key)            
            return mid;    //找到则返回相应的位置
        if (sSource[mid] > key)            
            high = mid - 1;    //如果比key大,则往低的位置查找
        else
            low = mid + 1;    //如果比key小,则往高的位置查找
    }    
    return -1;    
}

 

 

C语言二分查找法(指针和数组实现)

/*
 * 编写一个函数,对一个已排序的整数表执行二分查找。
 * 函数的输入包括各异指向表头的指针,表中的元素个数,以及待查找的数值。
 * 函数的输出时一个指向满足查找要求的元素的指针,当未查找到要求的数值时,输出一个NULL指针
 * 用两个版本实现,一个用的是数组小标,第二个用的是指针
 * 他们均采用了不对称边界
 * 
Copyright (c) 2012 LiMing
Author:        LiMing
2012-06-21
referenced C Traps and Pitfaills Chinese Edition
Page 132-137
 * 
 * 查找的元素为x,数组下表是k,开始时0 <= k < n
 * 接下来缩小范围lo <= k < hi,
 * if lo equals hi, we can justify the element "x" is not in the array
 
 * */
#include <stdio.h>

int array[] = 
{    
    0,1,2,3,4,5,6,7
};

int *bsearch_01(int *t, int n, int x);

int *bsearch_01(int *t, int n, int x)
{
    int lo = 0;
    int hi = n;
    
    while(lo < hi)
    {
        //int mid = (hi + lo) / 2;
        int mid = (hi + lo) >> 1;
        
        if(x < t[mid])
            hi = mid;
        else if(x > t[mid])
            lo = mid + 1;
        else
            return t + mid;        
    }
    return NULL;
}

int *bsearch_02(int *t, int n, int x);

int *bsearch_02(int *t, int n, int x)
{
    int lo = 0;
    int hi = n;
    
    while(lo < hi)
    {
        //int mid = (hi + lo) / 2;
        int mid = (hi + lo) >> 1;
        int *p = t + mid;        //用指针变量p存储t+mid的值,这样就不需要每次都重新计算
        
        if(x < *p)
            hi = mid;
        else if(x > *p)
            lo = mid + 1;
        else
            return p;        
    }
    return NULL;
}


//进一步减少寻址运算
/*
 * Suppose we want to reduce address arithmetic still further 
 * by using pointers instead of subscripts throughout the program.
 * 
 * */
int *bsearch_03(int *t, int n, int x);

int *bsearch_03(int *t, int n, int x)
{
    int *lo = t;
    int *hi = t + n;
    
    while(lo < hi)
    {
        //int mid = (hi + lo) / 2;
        int *mid = lo + ((hi - lo) >> 1);
        
        if(x < *mid)
            hi = mid;
        else if(x > *mid)
            lo = mid + 1;
        else
            return mid;    
    }
    return NULL;
}

/*
 * The resulting program looks somewhat neater because of the symmetry
 * */
int *bsearch_04(int *t, int n, int x);

int *bsearch_04(int *t, int n, int x)
{
    int lo = 0;
    int hi = n - 1;
    
    while(lo <= hi)
    {
        //int mid = (hi + lo) / 2;
        int mid = (hi + lo) >> 1;
        
        if(x < t[mid])
            hi = mid - 1;
        else if(x > t[mid])
            lo = mid + 1;
        else
            return t + mid;    
    }
    return NULL;
}

int main(int argc, char **argv)
{
    int * ret = NULL;
    int *ret2 = NULL;
    int *ret3 = NULL;
    int *ret4 = NULL;
    
    ret = bsearch_01(array, 8, 3);
    ret2 = bsearch_02(array, 8, 6);
    ret3 = bsearch_03(array, 8, 4);
    ret4 = bsearch_04(array, 8, 2);
    printf("The result is %d\n", *ret);
    printf("The result is %d\n", *ret2);
    printf("The result is %d\n", *ret3);
    printf("The result is %d\n", *ret4);
    
    printf("hello world\n");
    return 0;
}

 

递归方法

int BinSearch(int Array[],int low,int high,int key/*要找的值*/)
{
    if (low<=high)
    {
        int mid = (low+high)/2;
        if(key == Array[mid])
            return mid;
        else if(key<Array[mid])
            return BinSearch(Array,low,mid-1,key);
        else if(key>Array[mid])
            return BinSearch(Array,mid+1,high,key);
    }
    else
        return -1;
}

非递归方法

int BinSearch(int Array[],int SizeOfArray,int key/*要找的值*/)
{
    int low=0,high=SizeOfArray-1;
    int mid;
    while (low<=high)
    {
        mid = (low+high)/2;
        if(key==Array[mid])
            return mid;
        if(key<Array[mid])
            high=mid-1;
        if(key>Array[mid])
            low=mid+1;
    }
    return -1;
}

 

对分查找算法及实现

标签:

原文地址:http://www.cnblogs.com/lishuai0214/p/4198861.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!