码迷,mamicode.com
首页 > 编程语言 > 详细

利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(4)

时间:2014-05-26 04:02:14      阅读:570      评论:0      收藏:0      [点我收藏+]

标签:duplicated   map   replace   cut   get_dummies   

1、数据转换

目前为止介绍的都是数据的重排。另一类重要操作则是过滤、清理以及其他的转换工作。


2、移除重复数据

DataFrame中常常会出现重复行。下面就是一个例子:

In [4]: data = pd.DataFrame({'k1':['one'] * 3 + ['two'] * 4,
                     'k2':[1, 1, 2, 3, 3, 4, 4]})

In [5]: data
Out[5]: 
    k1  k2
0  one   1
1  one   1
2  one   2
3  two   3
4  two   3
5  two   4
6  two   4

[7 rows x 2 columns]
DataFrame的duplicated方法返回一个布尔型Series,表示各行是否是重复行:

In [6]: data.duplicated()
Out[6]: 
0    False
1     True
2    False
3    False
4     True
5    False
6     True
dtype: bool
还有一个与此相关的drop_duplicates方法,它用于返回一个移除了重复行的DataFrame:

In [7]: data.drop_duplicates()
Out[7]: 
    k1  k2
0  one   1
2  one   2
3  two   3
5  two   4

[4 rows x 2 columns]
这两个方法默认会判断全部列,你也可以指定部分列进行重复项判断。假设你还有一列值,且只希望根据k1列过滤重复项:

In [8]: data['v1'] = range(7)

In [9]: data
Out[9]: 
    k1  k2  v1
0  one   1   0
1  one   1   1
2  one   2   2
3  two   3   3
4  two   3   4
5  two   4   5
6  two   4   6

[7 rows x 3 columns]

In [10]: data.drop_duplicates(['k1'])
Out[10]: 
    k1  k2  v1
0  one   1   0
3  two   3   3

[2 rows x 3 columns]
duplicated和drop_duplicates默认保留的是第一个出现的值组合。传入take_last=True则保留最后一个:

In [11]: data.drop_duplicates(['k1', 'k2'], take_last=True)
Out[11]: 
    k1  k2  v1
1  one   1   1
2  one   2   2
4  two   3   4
6  two   4   6

[4 rows x 3 columns]


3、利用函数或映射进行数据转换

在对数据集进行转换时,你可能希望根据数组、Series或DataFrame列中的值来实现该转换工作。我们来看看下面这组有关肉类的数据:

In [12]: data = pd.DataFrame({'food':['bacon', 'pulled pork', 'bacon', 'Pastrami', 'corned beef', 'Bacon', 
                                      'pastrami', 'honey ham', 'nova lox'],
   ....:                     'ounces':[4, 3, 12, 6, 7.5, 8, 3, 5, 6]})

In [13]: data
Out[13]: 
          food  ounces
0        bacon     4.0
1  pulled pork     3.0
2        bacon    12.0
3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

[9 rows x 2 columns]
假设你想要添加一列表示该肉类食物来源的动物类型。我们先编写一个肉类到动物的映射:

In [14]: meat_to_animal = {
   ....:        'bacon': 'pig',
   ....:        'pulled pork': 'pig',
   ....:        'pastrami': 'cow',
   ....:        'corned beef': 'cow',
   ....:        'honey ham': 'pig',
   ....:        'nova lox': 'salmon'
   ....: }
Series的map方法可以接受一个函数或含有映射关系的字典型对象,但是这里有一个小问题,即有些肉类的首字母大写了,而另一些则没有。因此,我们还需要将各个值转换为小写:

In [15]: data['animal'] = data['food'].map(str.lower).map(meat_to_animal)

In [16]: data
Out[16]: 
          food  ounces  animal
0        bacon     4.0     pig
1  pulled pork     3.0     pig
2        bacon    12.0     pig
3     Pastrami     6.0     cow
4  corned beef     7.5     cow
5        Bacon     8.0     pig
6     pastrami     3.0     cow
7    honey ham     5.0     pig
8     nova lox     6.0  salmon

[9 rows x 3 columns]
我们也可以传入一个能够完成全部这些工作的函数:

In [17]: data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[17]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

说明:

使用map是一种实现元素级转换以及其他数据清理工作的便捷方式。


4、替换值

利用fillna方法填充缺失数据可以看做值替换的一种特殊情况。虽然前面提到的mao可用于修改对象的数据子集,而replace则提供了一种实现该功能的更简单、更灵活的方式。我们来看看下面这个Series:

In [18]: data = pd.Series([1., -999, 2., -999, -1000., 3.])

In [19]: data
Out[19]: 
0       1
1    -999
2       2
3    -999
4   -1000
5       3
dtype: float64
-999这个值可能是一个表示缺失数据的标记值。要将其替换为pandas能够理解的NA值,我们可以利用replace来产生一个新的Series:

In [20]: data.replace(-999, np.nan)
Out[20]: 
0       1
1     NaN
2       2
3     NaN
4   -1000
5       3
dtype: float64
如果你希望一次性替换多个值,可以传入一个由待替换值组成的列表以及一个替换值:

In [21]: data.replace([-999, -1000], np.nan)
Out[21]: 
0     1
1   NaN
2     2
3   NaN
4   NaN
5     3
dtype: float64
如果希望对不同的值进行不同的替换,则传入一个由替换关系组成的列表即可:

In [22]: data.replace([-999, -1000], [np.nan, 0])
Out[22]: 
0     1
1   NaN
2     2
3   NaN
4     0
5     3
dtype: float64
传入的参数也可以是字典:

In [23]: data.replace({-999: np.nan, -1000: 0})
Out[23]: 
0     1
1   NaN
2     2
3   NaN
4     0
5     3
dtype: float64


5、重命名轴索引

跟Series中的值一样,轴标签也可以通过函数或映射进行转换,从而得到一个新对象。轴还可以被就地修改,而无需新建一个数据结构。接下来看看下面这个简单的例子:

In [24]: data = pd.DataFrame(np.arange(12).reshape((3, 4)),
   ....:                     index=['Ohio', 'Colorado', 'New York'],
   ....:                     columns=['one', 'two', 'three', 'four'])
跟Series一样,轴标签也有一个map方法:

In [25]: data.index.map(str.upper)
Out[25]: array(['OHIO', 'COLORADO', 'NEW YORK'], dtype=object)
你可以将其赋值给index,这样就可以对DataFrame进行就地修改了:

In [26]: data.index = data.index.map(str.upper)

In [27]: data
Out[27]: 
          one  two  three  four
OHIO        0    1      2     3
COLORADO    4    5      6     7
NEW YORK    8    9     10    11

[3 rows x 4 columns]
如果想要创建数据集的转换版(而不是修改原始数据),比较使用的方式是rename:

In [28]: data.rename(index=str.title, columns=str.upper)
Out[28]: 
          ONE  TWO  THREE  FOUR
Ohio        0    1      2     3
Colorado    4    5      6     7
New York    8    9     10    11

[3 rows x 4 columns]
特别说明一下,rename可以结合字典型对象实现对部分轴标签的更新:

In [31]: data.rename(index={'OHIO': 'INDIANA'},
                     columns={'three': 'peekaboo'})
Out[31]: 
          one  two  peekaboo  four
INDIANA     0    1         2     3
COLORADO    4    5         6     7
NEW YORK    8    9        10    11

[3 rows x 4 columns]
rename帮我们实现了:复制DataFrame并对其索引和列标签进行赋值。如果希望就地修改某个数据集,传入inplace=True即可:

In [32]: # 总是返回DataFrame的引用

In [33]: _ = data.rename(index={'OHIO': 'INDIANA'}, inplace=True)

In [34]: data
Out[34]: 
          one  two  three  four
INDIANA     0    1      2     3
COLORADO    4    5      6     7
NEW YORK    8    9     10    11

[3 rows x 4 columns]


6、离散化和面元划分

为了便于分析,连续数据常常被离散化或拆分为“面元”(bin)。假设有一组人员数据,而你希望将它们划分为不同的年龄组:

In [35]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
接下来将这些数据划分为“18到25”、“26到35”、“35到60”以及“60以上”几个面元。要实现该功能,你需要使用pandas的cut函数:

In [36]: bins = [18, 25, 35, 60, 100]

In [37]: cats = pd.cut(ages, bins)

In [38]: cats
Out[38]: 
  (18, 25]
  (18, 25]
  (18, 25]
  (25, 35]
  (18, 25]
  (18, 25]
  (35, 60]
  (25, 35]
 (60, 100]
  (35, 60]
  (35, 60]
  (25, 35]
Levels (4): Index(['(18, 25]', '(25, 35]', '(35, 60]', '(60, 100]'], dtype=object)
pandas返回的是一个特殊的Categorical对象。你可以将其看做一组表示面元名称的字符串。实际上,它含有一个表示不同分类名称的levels数组以及一个为年龄数据进行标号的labels属性:

In [39]: cats.labels
Out[39]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1])

In [40]: cats.levels
Out[40]: Index([u'(18, 25]', u'(25, 35]', u'(35, 60]', u'(60, 100]'], dtype='object')

In [41]: pd.value_counts(cats)
Out[41]: 
(18, 25]     5
(35, 60]     3
(25, 35]     3
(60, 100]    1
dtype: int64
跟“区间”的数学符号一样,园括号表示开端,而方括号则表示闭断(包括)。哪边是闭端可以通过right=False进行修改

In [42]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)
Out[42]: 
  [18, 26)
  [18, 26)
  [18, 26)
  [26, 36)
  [18, 26)
  [18, 26)
  [36, 61)
  [26, 36)
 [61, 100)
  [36, 61)
  [36, 61)
  [26, 36)
Levels (4): Index(['[18, 26)', '[26, 36)', '[36, 61)', '[61, 100)'], dtype=object)
你也可以设置自己的面元名称,将labels选项设置为一个列表或数组即可:

In [43]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

In [44]: pd.cut(ages, bins, labels=group_names)
Out[44]: 
      Youth
      Youth
      Youth
 YoungAdult
      Youth
      Youth
 MiddleAged
 YoungAdult
     Senior
 MiddleAged
 MiddleAged
 YoungAdult
Levels (4): Index(['Youth', 'YoungAdult', 'MiddleAged', 'Senior'], dtype=object)
如果向cut传入的是面元的数量而不是确切的面元边界,则它会根据数据的最小值和最大值计算等长面元。下面这个例子中,我们将一些均匀分布的数据分成四组:

In [45]: data = np.random.rand(20)

In [46]: pd.cut(data, 4, precision=2)
Out[46]: 
 (0.037, 0.26]
 (0.037, 0.26]
   (0.48, 0.7]
   (0.7, 0.92]
 (0.037, 0.26]
 (0.037, 0.26]
   (0.7, 0.92]
   (0.7, 0.92]
 (0.037, 0.26]
  (0.26, 0.48]
  (0.26, 0.48]
  (0.26, 0.48]
 (0.037, 0.26]
  (0.26, 0.48]
   (0.48, 0.7]
   (0.7, 0.92]
 (0.037, 0.26]
   (0.7, 0.92]
 (0.037, 0.26]
 (0.037, 0.26]
Levels (4): Index(['(0.037, 0.26]', '(0.26, 0.48]', '(0.48, 0.7]',
                   '(0.7, 0.92]'], dtype=object)
qcut是一个非常类似于cut的函数,它可以根据样本分位数对数据进行面元划分。根据数据的分布情况,cut可能无法使各个面元中含有相同数量的数据点。而qcut由于使用的是样本分位数,因此可以得到大小基本相等的面元

In [48]: data = np.random.randn(1000) # 正态分布

In [49]: cats = pd.qcut(data, 4) # 按四分位数进行分隔

In [50]: cats
Out[50]: 
  [-3.636, -0.717]
    (0.647, 3.531]
  [-3.636, -0.717]
  [-3.636, -0.717]
  [-3.636, -0.717]
    (0.647, 3.531]
  [-3.636, -0.717]
 (-0.717, -0.0323]
 (-0.717, -0.0323]
    (0.647, 3.531]
  [-3.636, -0.717]
 (-0.717, -0.0323]
    (0.647, 3.531]
...
  [-3.636, -0.717]
  [-3.636, -0.717]
    (0.647, 3.531]
 (-0.717, -0.0323]
    (0.647, 3.531]
  [-3.636, -0.717]
  [-3.636, -0.717]
  (-0.0323, 0.647]
  [-3.636, -0.717]
 (-0.717, -0.0323]
 (-0.717, -0.0323]
  (-0.0323, 0.647]
    (0.647, 3.531]
Levels (4): Index(['[-3.636, -0.717]', '(-0.717, -0.0323]',
                   '(-0.0323, 0.647]', '(0.647, 3.531]'], dtype=object)
Length: 1000

In [51]: pd.value_counts(cats)
Out[51]: 
(-0.717, -0.0323]    250
(-0.0323, 0.647]     250
(0.647, 3.531]       250
[-3.636, -0.717]     250
dtype: int64
跟cut一样,也可以设置自定义的分位数(0到1之间的数值,包含端点):

In [52]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[52]: 
 (-1.323, -0.0323]
  (-0.0323, 1.234]
 (-1.323, -0.0323]
  [-3.636, -1.323]
  [-3.636, -1.323]
  (-0.0323, 1.234]
 (-1.323, -0.0323]
 (-1.323, -0.0323]
 (-1.323, -0.0323]
    (1.234, 3.531]
 (-1.323, -0.0323]
 (-1.323, -0.0323]
  (-0.0323, 1.234]
...
  [-3.636, -1.323]
 (-1.323, -0.0323]
  (-0.0323, 1.234]
 (-1.323, -0.0323]
  (-0.0323, 1.234]
  [-3.636, -1.323]
 (-1.323, -0.0323]
  (-0.0323, 1.234]
 (-1.323, -0.0323]
 (-1.323, -0.0323]
 (-1.323, -0.0323]
  (-0.0323, 1.234]
  (-0.0323, 1.234]
Levels (4): Index(['[-3.636, -1.323]', '(-1.323, -0.0323]',
                   '(-0.0323, 1.234]', '(1.234, 3.531]'], dtype=object)
Length: 1000

说明:

稍后在讲解聚合和分组运算时会再次用到cut和qcut,因为这两个离散化函数对分量和分组分析非常重要。


7、检测和过滤异常值

异常值(outlier)的过滤或变换运算在很大程度上其实就是数组运算。来看一个含有正态分布数据的DataFrame:

In [53]: np.random.seed(12345)

In [54]: data = pd.DataFrame(np.random.randn(1000, 4))

In [55]: data.describe()
Out[55]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean     -0.067684     0.067924     0.025598    -0.002298
std       0.998035     0.992106     1.006835     0.996794
min      -3.428254    -3.548824    -3.184377    -3.745356
25%      -0.774890    -0.591841    -0.641675    -0.644144
50%      -0.116401     0.101143     0.002073    -0.013611
75%       0.616366     0.780282     0.680391     0.654328
max       3.366626     2.653656     3.260383     3.927528

[8 rows x 4 columns]
假设你想要找出某列中绝对值大小超过3的值:

In [56]: col = data[3]

In [57]: col[np.abs(col) > 3]
Out[57]: 
97     3.927528
305   -3.399312
400   -3.745356
Name: 3, dtype: float64
要选出全部含有“超过3或-3的值”的行,你可以利用布尔型DataFrame以及any方法:

In [58]: data[(np.abs(data) > 3).any(1)]
Out[58]: 
            0         1         2         3
5   -0.539741  0.476985  3.248944 -1.021228
97  -0.774363  0.552936  0.106061  3.927528
102 -0.655054 -0.565230  3.176873  0.959533
305 -2.315555  0.457246 -0.025907 -3.399312
324  0.050188  1.951312  3.260383  0.963301
400  0.146326  0.508391 -0.196713 -3.745356
499 -0.293333 -0.242459 -3.056990  1.918403
523 -3.428254 -0.296336 -0.439938 -0.867165
586  0.275144  1.179227 -3.184377  1.369891
808 -0.362528 -3.548824  1.553205 -2.186301
900  3.366626 -2.372214  0.851010  1.332846

[11 rows x 4 columns]
根据这些条件,即可轻松地对值进行设置。下面的代码可以将值限制在区间-3到3以内:

In [59]: data[np.abs(data) > 3] = np.sign(data) * 3

In [60]: data.describe()
Out[60]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean     -0.067623     0.068473     0.025153    -0.002081
std       0.995485     0.990253     1.003977     0.989736
min      -3.000000    -3.000000    -3.000000    -3.000000
25%      -0.774890    -0.591841    -0.641675    -0.644144
50%      -0.116401     0.101143     0.002073    -0.013611
75%       0.616366     0.780282     0.680391     0.654328
max       3.000000     2.653656     3.000000     3.000000

[8 rows x 4 columns]

说明:

np.sign这个ufunc返回的是一个由1和-1组成的数组,表示原始值的符号。


8、排列和随机采样

利用numpy.random.permutation函数可以轻松实现对Series或DataFrame的列的排列工作(permuting,随机重排序)。通过需要排列的轴的长度调用permutation,可产生一个表示新顺序的整数数组:

In [61]: df = pd.DataFrame(np.arange(5 * 4).reshape(5, 4))

In [62]: sampler = np.random.permutation(5)

In [63]: sampler
Out[63]: array([1, 0, 2, 3, 4])
然后就可以在基于ix的索引操作或take函数中使用该数组了:

In [64]: df
Out[64]: 
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
4  16  17  18  19

[5 rows x 4 columns]

In [65]: df.take(sampler)
Out[65]: 
    0   1   2   3
1   4   5   6   7
0   0   1   2   3
2   8   9  10  11
3  12  13  14  15
4  16  17  18  19

[5 rows x 4 columns]
如果不想用替换的方式选取随机子集,则可以使用permutation:从permutation返回的数组中切下前k个元素,其中k为期望的子集大小。虽然有很多高效的算法可以实现非替换式采样,但是手边就有的工具为什么不用呢?

In [66]: df.take(np.random.permutation(len(df))[:3])
Out[66]: 
    0   1   2   3
1   4   5   6   7
3  12  13  14  15
4  16  17  18  19

[3 rows x 4 columns]
要通过替换的方式产生样本,最快的方式是通过np.random.randint得到一组随机整数:

In [67]: bag = np.array([5, 7, -1, 6, 4])

In [68]: sampler = np.random.randint(0, len(bag), size=10)

In [69]: sampler
Out[69]: array([4, 4, 2, 2, 2, 0, 3, 0, 4, 1])

In [70]: draws = bag.take(sampler)

In [71]: draws
Out[71]: array([ 4,  4, -1, -1, -1,  5,  6,  5,  4,  7])


9、计算指标/哑变量

另一种常用于统计建模或机器学习的转换方式是:将分类变量(categorical variable)转换为“哑变量矩阵”(dummy matrix)或“指标矩阵”(indicator matrix)。如果DataFrame的某一列中含有k个不同的值,则可以派生出一个k列矩阵或DataFrame(其值全为1和0)。pandas有一个get_dummies函数可以实现该功能(其实自己动手做一个也不难)。拿之前的一个例子来说:

In [72]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   ....:                    'data1': range(6)})

In [73]: pd.get_dummies(df['key'])
Out[73]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

[6 rows x 3 columns]
有时候,你可能想给指标DataFrame的列加上一个前缀,以便能够跟其他数据进行合并。get_dummies的prefix参数可以实现该功能:

In [74]: dummies = pd.get_dummies(df['key'], prefix='key')

In [75]: df_with_dummy = df[['data1']].join(dummies)

In [76]: df_with_dummy 
Out[76]: 
   data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

[6 rows x 4 columns]
如果DataFrame中的某行同属于多个分类,则事情就会有点复杂。根据MovieLens 1M数据集,如下所示:

In [77]: mnames = ['movie_id', 'title', 'genres']
In [78]: movies = pd.read_table('movies.dat', sep='::', header=None,
   .....: names=mnames)

In [79]: movies[:10]
Out[79]:
   movie_id                              title                       genres
0         1 		      Toy Story (1995)  Animation|Children's|Comedy
1         2   			Jumanji (1995) Adventure|Children's|Fantasy
2         3            Grumpier Old Men (1995)               Comedy|Romance
3         4           Waiting to Exhale (1995)                 Comedy|Drama
4         5 Father of the Bride Part II (1995)                       Comedy
5         6                        Heat (1995)        Action|Crime|Thriller
6         7                     Sabrina (1995)               Comedy|Romance
7         8                Tom and Huck (1995)         Adventure|Children's
8         9                Sudden Death (1995)                       Action
9        10                   GoldenEye (1995)    Action|Adventure|Thriller
要为每个genre添加指标变量就需要做一些数据规整操作。首先,我们从数据集中抽取出不同的genre值(注意巧用set.union):

In [80]: genre_iter = (set(x.split('|')) for x in movies.genres)

In [81]: genres = sorted(set.union(*genre_iter))
现在,我们从一个全零DataFrame开始构建指标DataFrame:

In [82]: dummies = DataFrame(np.zeros((len(movies), len(genres))), columns=genres) 
接下来,迭代每一部电影并将dummies各行的项设置为1:

In [83]: for i, gen in enumerate(movies.genres):
  .....: dummies.ix[i, gen.split('|')] = 1
然后,再将其与movies合并起来:

In [84]: movies_windic = movies.join(dummies.add_prefix('Genre_'))

In [85]: movies_windic.ix[0]
Out[85]:
movie_id		                  1
title 		           Toy Story (1995)
genres 		Animation|Children's|Comedy
Genre_Action                              0
Genre_Adventure                           0
Genre_Animation                           1
Genre_Children's                          1
Genre_Comedy                              1
Genre_Crime                               0
Genre_Documentary                         0
Genre_Drama                               0
Genre_Fantasy                             0
Genre_Film-Noir                           0
Genre_Horror                              0
Genre_Musical                             0
Genre_Mystery                             0
Genre_Romance                             0 
Genre_Sci-Fi                              0
Genre_Thriller                            0
Genre_War                                 0
Genre_Western                             0 
Name: 0

注意:

对于很大的数据,用这种方式构建多成员指标变量就会变得非常慢。肯定需要编写一个能够利用DataFrame内部机制的更低级的函数才行。

一个对统计应用有用的秘诀是:结合get_dummies和诸如cut之类的离散化函数。

In [86]: values = np.random.rand(10)

In [87]: values
Out[87]: 
array([ 0.75603383,  0.90830844,  0.96588737,  0.17373658,  0.87592824,
        0.75415641,  0.163486  ,  0.23784062,  0.85564381,  0.58743194])

In [88]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [89]: pd.get_dummies(pd.cut(values, bins))
Out[89]: 
   (0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1]
0         0           0           0           1         0
1         0           0           0           0         1
2         0           0           0           0         1
3         1           0           0           0         0
4         0           0           0           0         1
5         0           0           0           1         0
6         1           0           0           0         0
7         0           1           0           0         0
8         0           0           0           0         1
9         0           0           1           0         0

[10 rows x 5 columns]

利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(4),布布扣,bubuko.com

利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(4)

标签:duplicated   map   replace   cut   get_dummies   

原文地址:http://blog.csdn.net/ssw_1990/article/details/26565069

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!