码迷,mamicode.com
首页 > 编程语言 > 详细

高斯拟合c++实现

时间:2015-01-09 17:35:44      阅读:507      评论:0      收藏:0      [点我收藏+]

标签:高斯拟合   c++   奇异值分解   最小二乘法   

   高斯函数是数学上非常重要的函数,我们熟悉的正态分布的密度函数就是高斯函数,也称高斯分布。而正态分布无疑是概率论与数理统计里最重要的一个分布了。

   现在的问题是如果给出一些点集,如何找到一个高斯函数来拟合这些点集呢!

   当然,拟合方式还是最小二乘法,拟合函数形式为:


   y=a*exp(-((x-b)/c)^2);

 一共有三个参数,a、b、c.不过这种指数函数拟合比较难实现,所以利用对数变换将其化为二次函数,如下:

ln(y)=-(1/c^2)*x^2+(2b/c^2)*x +ln(a)-(b/c)^2;

这样,另z=ln(y),A=-(1/c^2),B=(2b/c^2),C=ln(a)-(b/c)^2;就可以利用最小二乘法拟合了,


这里我还是用奇异值分解法来解出最小二乘解,不过在这之前我先对点集做了处理,我并没有拟合所有的点集,因为这样效果很差,毕竟做了对数变换,

导致平坦点对曲线的影响太大,所以我事先判断出了峰值点,然后对峰值点做拟合,事实证明我的想法没错,拟合效果改善了很多!


VC实现效果如下:

技术分享


核心程序实现如下:


//GaussFit.h

/*************************************************************************
	版本:     2014-1-06
	功能说明: 对平面上的一些列点给出最小二乘的高斯拟合,利用奇异值分解法
	           解得最小二乘解作为高斯参数。
	调用形式: gaussfit( arrayx, arrayy,int n,float box,miny );;    
	参数说明: arrayx: arrayx[n],每个值为x轴一个点
	           arrayx: arrayy[n],每个值为y轴一个点
			   n     : 点的个数
			   box   : box[3],高斯函数的3个参数,分别为a,b,c;
			   miny  :y方向上的平移,实际拟合的函数为y=a*exp(-((x-b)/c)^2)+miny
***************************************************************************/

#pragma once

struct GPOINT
{
	int x;
	int y;
	GPOINT(int x,int y):x(x),y(y){};
	friend bool operator <(GPOINT p1,GPOINT p2)
	{
		return p1.x>p2.x;
	}

};
class GaussFit
{
public:
	GaussFit(void);
	~GaussFit(void);
	void gaussfit( int *arrayx, int *arrayy,int n,float *box,int &miny );
private:
	int SVD(float *a,int m,int n,float b[],float x[],float esp);
	int gmiv(float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka);
    int ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka);
	int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
};


//GaussFit.cpp


#include "StdAfx.h"
#include "GaussFit.h"
#include <cmath>
#include<queue>
#include<vector>
using namespace std;
GaussFit::GaussFit(void)
{
}


GaussFit::~GaussFit(void)
{
}


void  GaussFit::gaussfit(  int *arrayx, int *arrayy,int n,float *box,int &miny )
{   
	float *A1=new float[n*3];
	float *B1=new float[n];
	float *Pointx=new float[n];
	float *Pointy=new float[n];
	int maxy=0,midx,minx;
	miny=INT_MAX;
    const double min_eps = 1e-10;
    int i;
	priority_queue<GPOINT> gp;            //用来对point.x排序
 	priority_queue<int>py;                //用来计算第m小的point.y
	int m=n/10;
	m=m>0?m:1;
	for(i=0;i<n;i++)
	{
		GPOINT tmp(arrayx[i],arrayy[i]);
		gp.push(tmp);
		if(py.size()<m)
		{
			py.push(arrayy[i]);
		}
		else if(py.top()>arrayy[i])
		{
			py.pop();
			py.push(arrayy[i]);
		}
	}
	miny=py.top();         //用第m小的y代替最小的y,防止异常点
	minx=gp.top().x;        
	for( i=0;i<n;i++)
	{
		GPOINT tmp=gp.top();
		gp.pop();
		Pointx[i]=(tmp.x-minx)*1.0;
		Pointy[i]=(tmp.y-miny)*1.0;
		if(Pointy[i]>maxy)
		{
			maxy=Pointy[i];
			midx=i;
		}
		else if (Pointy[i]<0)
		{
			Pointy[i]=0;
		}
	}
	float meany=0;
	for(int i=0;i<n;i++)
	{
		meany+=Pointy[i];
	}
	meany/=n;

	//统计峰值
	vector<GPOINT>VG,Vtmp;
	for(int i=0;i<n;i++)
	{
		if(Pointy[i]>meany)
		{
			GPOINT tmp(Pointx[i],Pointy[i]);
			Vtmp.push_back(tmp);
		}
		else
		{
			int s1=VG.size(),s2=Vtmp.size();
			if(s1<s2)
			{
				VG.clear();
				for(int j=0;j<Vtmp.size();j++)
				{
					GPOINT tmp1(Vtmp[j].x,Vtmp[j].y);
					VG.push_back(tmp1);
				}
			}
		    Vtmp.clear();
		}
	}
   int s1=VG.size(),s2=Vtmp.size();
	if(s1<s2)
	{
		VG.clear();
		for(int j=0;j<Vtmp.size();j++)
		{
			GPOINT tmp1(Vtmp[j].x,Vtmp[j].y);
			VG.push_back(tmp1);
		}
	}

	//对峰值进行高斯拟合
	int size=VG.size();
	if(size>0)
	{
		 for( i = 0; i < n; i++ )
		{
			int step=(i)*3;
			float px,py;
			px = VG[i%size].x;
			py = VG[i%size].y;
			B1[i] = log(py);
			A1[step] = 1.0;
			A1[step + 1] = px;
			A1[step + 2] = px * px;
		}
		float *x1=new float[3];

		SVD(A1,n,3,B1,x1,min_eps);
		if (x1[2]<0)
		{
			box[2]=sqrt(-1.0/x1[2]);
			box[1]=x1[1]*box[2]*box[2]*0.5;
			box[0]=exp(x1[0]+box[1]*box[1]/(box[2]*box[2]));
			box[1]+=minx;
		}
		else
		{
			box[0]=box[1]=box[2]=-1;
		}
		delete []x1;
	}
	else
	{
		box[0]=box[1]=box[2]=-1;
	}
	delete []A1;
    delete []B1;
	delete []Pointx;
	delete []Pointy;
}

int GaussFit::SVD(float *a,int m,int n,float b[],float x[],float esp)
{  
	float *aa;
	float *u;
	float *v;
    aa=new float[n*m];
	u=new  float[m*m];
    v=new  float[n*n];
   
   int ka;
   int  flag;
   if(m>n)
   { 
	ka=m+1;
   }else
   {
	   ka=n+1;
   }
   
   flag=gmiv(a,m,n,b,x,aa,esp,u,v,ka);
   
    
    
	delete []aa;
	delete []u;
	delete []v;
    
	return(flag);
}





int GaussFit::gmiv( float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka)  
{ 
	int i,j;
    i=ginv(a,m,n,aa,eps,u,v,ka);

    if (i<0) return(-1);
    for (i=0; i<=n-1; i++)
      { x[i]=0.0;
        for (j=0; j<=m-1; j++)
          x[i]=x[i]+aa[i*m+j]*b[j];
      }
    return(1);
  }


int GaussFit::ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka)
  { 

 //  int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
	
	int i,j,k,l,t,p,q,f;
    i=muav(a,m,n,u,v,eps,ka);
    if (i<0) return(-1);
    j=n;
    if (m<n) j=m;
    j=j-1;
    k=0;
    while ((k<=j)&&(a[k*n+k]!=0.0)) k=k+1;
    k=k-1;
    for (i=0; i<=n-1; i++)
    for (j=0; j<=m-1; j++)
      { t=i*m+j; aa[t]=0.0;
        for (l=0; l<=k; l++)
          { f=l*n+i; p=j*m+l; q=l*n+l;
            aa[t]=aa[t]+v[f]*u[p]/a[q];
          }
      }
    return(1);
  }






int GaussFit::muav(float a[],int m,int n,float u[],float v[],float eps,int ka)
  { int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
    float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
    float *s,*e,*w;
    //void ppp();
   // void sss();
     void ppp(float a[],float e[],float s[],float v[],int m,int n);
     void sss(float fg[],float cs[]);

	s=(float *) malloc(ka*sizeof(float));
    e=(float *) malloc(ka*sizeof(float));
    w=(float *) malloc(ka*sizeof(float));
    it=60; k=n;
    if (m-1<n) k=m-1;
    l=m;
    if (n-2<m) l=n-2;
    if (l<0) l=0;
    ll=k;
    if (l>k) ll=l;
    if (ll>=1)
      { for (kk=1; kk<=ll; kk++)
          { if (kk<=k)
              { d=0.0;
                for (i=kk; i<=m; i++)
                  { ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];}
                s[kk-1]=(float)sqrt(d);
                if (s[kk-1]!=0.0)
                  { ix=(kk-1)*n+kk-1;
                    if (a[ix]!=0.0)
                      { s[kk-1]=(float)fabs(s[kk-1]);
                        if (a[ix]<0.0) s[kk-1]=-s[kk-1];
                      }
                    for (i=kk; i<=m; i++)
                      { iy=(i-1)*n+kk-1;
                        a[iy]=a[iy]/s[kk-1];
                      }
                    a[ix]=1.0f+a[ix];
                  }
                s[kk-1]=-s[kk-1];
              }
            if (n>=kk+1)
              { for (j=kk+1; j<=n; j++)
                  { if ((kk<=k)&&(s[kk-1]!=0.0))
                      { d=0.0;
                        for (i=kk; i<=m; i++)
                          { ix=(i-1)*n+kk-1;
                            iy=(i-1)*n+j-1;
                            d=d+a[ix]*a[iy];
                          }
                        d=-d/a[(kk-1)*n+kk-1];
                        for (i=kk; i<=m; i++)
                          { ix=(i-1)*n+j-1;
                            iy=(i-1)*n+kk-1;
                            a[ix]=a[ix]+d*a[iy];
                          }
                      }
                    e[j-1]=a[(kk-1)*n+j-1];
                  }
              }
            if (kk<=k)
              { for (i=kk; i<=m; i++)
                  { ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1;
                    u[ix]=a[iy];
                  }
              }
            if (kk<=l)
              { d=0.0;
                for (i=kk+1; i<=n; i++)
                  d=d+e[i-1]*e[i-1];
                e[kk-1]=(float)sqrt(d);
                if (e[kk-1]!=0.0)
                  { if (e[kk]!=0.0)
                      { e[kk-1]=(float)fabs(e[kk-1]);
                        if (e[kk]<0.0) e[kk-1]=-e[kk-1];
                      }
                    for (i=kk+1; i<=n; i++)
                      e[i-1]=e[i-1]/e[kk-1];
                    e[kk]=1.0f+e[kk];
                  }
                e[kk-1]=-e[kk-1];
                if ((kk+1<=m)&&(e[kk-1]!=0.0))
                  { for (i=kk+1; i<=m; i++) w[i-1]=0.0;
                    for (j=kk+1; j<=n; j++)
                      for (i=kk+1; i<=m; i++)
                        w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
                    for (j=kk+1; j<=n; j++)
                      for (i=kk+1; i<=m; i++)
                        { ix=(i-1)*n+j-1;
                          a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
                        }
                  }
                for (i=kk+1; i<=n; i++)
                  v[(i-1)*n+kk-1]=e[i-1];
              }
          }
      }
    mm=n;
    if (m+1<n) mm=m+1;
    if (k<n) s[k]=a[k*n+k];
    if (m<mm) s[mm-1]=0.0;
    if (l+1<mm) e[l]=a[l*n+mm-1];
    e[mm-1]=0.0;
    nn=m;
    if (m>n) nn=n;
    if (nn>=k+1)
      { for (j=k+1; j<=nn; j++)
          { for (i=1; i<=m; i++)
              u[(i-1)*m+j-1]=0.0;
            u[(j-1)*m+j-1]=1.0;
          }
      }
    if (k>=1)
      { for (ll=1; ll<=k; ll++)
          { kk=k-ll+1; iz=(kk-1)*m+kk-1;
            if (s[kk-1]!=0.0)
              { if (nn>=kk+1)
                  for (j=kk+1; j<=nn; j++)
                    { d=0.0;
                      for (i=kk; i<=m; i++)
                        { ix=(i-1)*m+kk-1;
                          iy=(i-1)*m+j-1;
                          d=d+u[ix]*u[iy]/u[iz];
                        }
                      d=-d;
                      for (i=kk; i<=m; i++)
                        { ix=(i-1)*m+j-1;
                          iy=(i-1)*m+kk-1;
                          u[ix]=u[ix]+d*u[iy];
                        }
                    }
                  for (i=kk; i<=m; i++)
                    { ix=(i-1)*m+kk-1; u[ix]=-u[ix];}
                  u[iz]=1.0f+u[iz];
                  if (kk-1>=1)
                    for (i=1; i<=kk-1; i++)
                      u[(i-1)*m+kk-1]=0.0;
              }
            else
              { for (i=1; i<=m; i++)
                  u[(i-1)*m+kk-1]=0.0;
                u[(kk-1)*m+kk-1]=1.0;
              }
          }
      }
    for (ll=1; ll<=n; ll++)
      { kk=n-ll+1; iz=kk*n+kk-1;
        if ((kk<=l)&&(e[kk-1]!=0.0))
          { for (j=kk+1; j<=n; j++)
              { d=0.0;
                for (i=kk+1; i<=n; i++)
                  { ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1;
                    d=d+v[ix]*v[iy]/v[iz];
                  }
                d=-d;
                for (i=kk+1; i<=n; i++)
                  { ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1;
                    v[ix]=v[ix]+d*v[iy];
                  }
              }
          }
        for (i=1; i<=n; i++)
          v[(i-1)*n+kk-1]=0.0;
        v[iz-n]=1.0;
      }
    for (i=1; i<=m; i++)
    for (j=1; j<=n; j++)
      a[(i-1)*n+j-1]=0.0;
    m1=mm; it=60;
    while (1==1)
      { if (mm==0)
          { ppp(a,e,s,v,m,n);
            free(s); free(e); free(w); return(1);
          }
        if (it==0)
          { ppp(a,e,s,v,m,n);
            free(s); free(e); free(w); return(-1);
          }
        kk=mm-1;
	while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
          { d=(float)(fabs(s[kk-1])+fabs(s[kk]));
            dd=(float)fabs(e[kk-1]);
            if (dd>eps*d) kk=kk-1;
            else e[kk-1]=0.0;
          }
        if (kk==mm-1)
          { kk=kk+1;
            if (s[kk-1]<0.0)
              { s[kk-1]=-s[kk-1];
                for (i=1; i<=n; i++)
                  { ix=(i-1)*n+kk-1; v[ix]=-v[ix];}
              }
            while ((kk!=m1)&&(s[kk-1]<s[kk]))
              { d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d;
                if (kk<n)
                  for (i=1; i<=n; i++)
                    { ix=(i-1)*n+kk-1; iy=(i-1)*n+kk;
                      d=v[ix]; v[ix]=v[iy]; v[iy]=d;
                    }
                if (kk<m)
                  for (i=1; i<=m; i++)
                    { ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
                      d=u[ix]; u[ix]=u[iy]; u[iy]=d;
                    }
                kk=kk+1;
              }
            it=60;
            mm=mm-1;
          }
        else
          { ks=mm;
            while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
              { d=0.0;
                if (ks!=mm) d=d+(float)fabs(e[ks-1]);
                if (ks!=kk+1) d=d+(float)fabs(e[ks-2]);
                dd=(float)fabs(s[ks-1]);
                if (dd>eps*d) ks=ks-1;
                else s[ks-1]=0.0;
              }
            if (ks==kk)
              { kk=kk+1;
                d=(float)fabs(s[mm-1]);
                t=(float)fabs(s[mm-2]);
                if (t>d) d=t;
                t=(float)fabs(e[mm-2]);
                if (t>d) d=t;
                t=(float)fabs(s[kk-1]);
                if (t>d) d=t;
                t=(float)fabs(e[kk-1]);
                if (t>d) d=t;
                sm=s[mm-1]/d; sm1=s[mm-2]/d;
                em1=e[mm-2]/d;
                sk=s[kk-1]/d; ek=e[kk-1]/d;
                b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0f;
                c=sm*em1; c=c*c; shh=0.0;
                if ((b!=0.0)||(c!=0.0))
                  { shh=(float)sqrt(b*b+c);
                    if (b<0.0) shh=-shh;
                    shh=c/(b+shh);
                  }
                fg[0]=(sk+sm)*(sk-sm)-shh;
                fg[1]=sk*ek;
                for (i=kk; i<=mm-1; i++)
                  { sss(fg,cs);
                    if (i!=kk) e[i-2]=fg[0];
                    fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
                    e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
                    fg[1]=cs[1]*s[i];
                    s[i]=cs[0]*s[i];
                    if ((cs[0]!=1.0)||(cs[1]!=0.0))
                      for (j=1; j<=n; j++)
                        { ix=(j-1)*n+i-1;
                          iy=(j-1)*n+i;
                          d=cs[0]*v[ix]+cs[1]*v[iy];
                          v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
                          v[ix]=d;
                        }
                    sss(fg,cs);
                    s[i-1]=fg[0];
                    fg[0]=cs[0]*e[i-1]+cs[1]*s[i];
                    s[i]=-cs[1]*e[i-1]+cs[0]*s[i];
                    fg[1]=cs[1]*e[i];
                    e[i]=cs[0]*e[i];
                    if (i<m)
                      if ((cs[0]!=1.0)||(cs[1]!=0.0))
                        for (j=1; j<=m; j++)
                          { ix=(j-1)*m+i-1;
                            iy=(j-1)*m+i;
                            d=cs[0]*u[ix]+cs[1]*u[iy];
                            u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
                            u[ix]=d;
                          }
                  }
                e[mm-2]=fg[0];
                it=it-1;
              }
            else
              { if (ks==mm)
                  { kk=kk+1;
                    fg[1]=e[mm-2]; e[mm-2]=0.0;
                    for (ll=kk; ll<=mm-1; ll++)
                      { i=mm+kk-ll-1;
                        fg[0]=s[i-1];
                        sss(fg,cs);
                        s[i-1]=fg[0];
                        if (i!=kk)
                          { fg[1]=-cs[1]*e[i-2];
                            e[i-2]=cs[0]*e[i-2];
                          }
                        if ((cs[0]!=1.0)||(cs[1]!=0.0))
                          for (j=1; j<=n; j++)
                            { ix=(j-1)*n+i-1;
                              iy=(j-1)*n+mm-1;
                              d=cs[0]*v[ix]+cs[1]*v[iy];
                              v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
                              v[ix]=d;
                            }
                      }
                  }
                else
                  { kk=ks+1;
                    fg[1]=e[kk-2];
                    e[kk-2]=0.0;
                    for (i=kk; i<=mm; i++)
                      { fg[0]=s[i-1];
                        sss(fg,cs);
                        s[i-1]=fg[0];
                        fg[1]=-cs[1]*e[i-1];
                        e[i-1]=cs[0]*e[i-1];
                        if ((cs[0]!=1.0)||(cs[1]!=0.0))
                          for (j=1; j<=m; j++)
                            { ix=(j-1)*m+i-1;
                              iy=(j-1)*m+kk-2;
                              d=cs[0]*u[ix]+cs[1]*u[iy];
                              u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
                              u[ix]=d;
                            }
                      }
                  }
              }
          }
      }
   
   	free(s);free(e);free(w); 
	  return(1);


  }

 
void ppp(float a[],float e[],float s[],float v[],int m,int n) 
{ int i,j,p,q;
    float d;
    if (m>=n) i=n;
    else i=m;
    for (j=1; j<=i-1; j++)
      { a[(j-1)*n+j-1]=s[j-1];
        a[(j-1)*n+j]=e[j-1];
      }
    a[(i-1)*n+i-1]=s[i-1];
    if (m<n) a[(i-1)*n+i]=e[i-1];
    for (i=1; i<=n-1; i++)
    for (j=i+1; j<=n; j++)
      { p=(i-1)*n+j-1; q=(j-1)*n+i-1;
        d=v[p]; v[p]=v[q]; v[q]=d;
      }
    return;
  }

 
  void sss(float fg[],float cs[])
 { float r,d;
    if ((fabs(fg[0])+fabs(fg[1]))==0.0)
      { cs[0]=1.0; cs[1]=0.0; d=0.0;}
    else 
      { d=(float)sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
        if (fabs(fg[0])>fabs(fg[1]))
          { d=(float)fabs(d);
            if (fg[0]<0.0) d=-d;
          }
        if (fabs(fg[1])>=fabs(fg[0]))
          { d=(float)fabs(d);
            if (fg[1]<0.0) d=-d;
          }
        cs[0]=fg[0]/d; cs[1]=fg[1]/d;
      }
    r=1.0;
    if (fabs(fg[0])>fabs(fg[1])) r=cs[1];
    else
      if (cs[0]!=0.0) r=1.0f/cs[0];
    fg[0]=d; fg[1]=r;
    return;
  }


高斯拟合c++实现

标签:高斯拟合   c++   奇异值分解   最小二乘法   

原文地址:http://blog.csdn.net/alop_daoyan/article/details/42555213

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!