码迷,mamicode.com
首页 > 编程语言 > 详细

UVA1395 Slim Span(kruskal算法)

时间:2015-01-12 22:37:21      阅读:391      评论:0      收藏:0      [点我收藏+]

标签:uva



Slim Span

[PDF Link]

Given an undirected weighted graph G , you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE) , where V is a set of vertices {v1v2,..., vn} and E is a set of undirected edges {e1e2,..., em} . Each edge e 技术分享 E has its weight w(e) .

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n - 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n - 1 edges of T .

技术分享

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5} . The weights of the edges are w(e1) = 3 , w(e2) = 5 , w(e3) = 6w(e4) = 6 , w(e5) = 7 as shown in Figure 5(b).

=6in 技术分享

There are several spanning trees for G . Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb , Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input 

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.


n m 
a1 b1 w1 
技术分享 
am bm wm 


Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.


n is the number of the vertices and m the number of the edges. You can assume 2技术分享n100 and 0mn(n - 1)/2 . ak and bk (k = 1,..., m) are positive integers less than or equal to n , which represent the two vertices vak and vbk connected by the k -th edge ek . wk is a positive integer less than or equal to 10000, which indicates the weight of ek . You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output 

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1‘ should be printed. An output should not contain extra characters.

Sample Input 

4 5 
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6 
1 2 10 
1 3 100 
1 4 90 
2 3 20 
2 4 80 
3 4 40 
2 1 
1 2 1
3 0 
3 1 
1 2 1
3 3 
1 2 2
2 3 5 
1 3 6 
5 10 
1 2 110 
1 3 120 
1 4 130 
1 5 120 
2 3 110 
2 4 120 
2 5 130 
3 4 120 
3 5 110 
4 5 120 
5 10 
1 2 9384 
1 3 887 
1 4 2778 
1 5 6916 
2 3 7794 
2 4 8336 
2 5 5387 
3 4 493 
3 5 6650 
4 5 1422 
5 8 
1 2 1 
2 3 100 
3 4 100 
4 5 100 
1 5 50 
2 5 50 
3 5 50 
4 1 150 
0 0

Sample Output 

1 
20 
0 
-1 
-1 
1 
0 
1686 
50

题目大意:

给出一个N结点的图,求苗条度(最大边减最小边的值)尽量最小的生成树。

解题思路:

首先把边按权值从小到大排序。对于一个连续的边集区间【L,R】,如果这些边使得N个点全部联通,则一定存在一个苗条度不超过W[R]-W[L]的生成树。

从小到大枚举L,对于每个L,从小到大枚举R,同时用并查集将先进入【L,R】的边两端的点合并成一个集合,与kruskal算法一样。当所有点联通时停止枚举R,换下一个L继续枚举。


UVA1395 Slim Span(kruskal算法)

标签:uva

原文地址:http://blog.csdn.net/hush_lei/article/details/42649827

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!