标签:
方法1:递归方法:
(1)如果两个节点分别在根节点的左子树和右子树,则返回根节点
(2)如果两个节点都在左子树,则递归处理左子树;如果两个节点都在右子树,则递归处理右子树
bool FindNode(BTree* pRoot, BTree* pNode) { if (pRoot == NULL || pNode == NULL) { return false; } if (pRoot == pNode) { return true; } bool found = FindNode(pRoot->m_nLeft, pNode); if (!found) { found = FindNode(pRoot->m_nRight,pNode); } return found; } BTree* GetCommentParent(BTree* pRoot, BTree* pNode1, BTree* pNode2) { if (FindNode(pRoot->m_nLeft,pNode1)) { if (FindNode(pRoot->m_nRight, pNode2)) { return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点 } else//如果两个节点都在左子树,则递归处理左子树 { return GetCommentParent(pRoot->m_nLeft,pNode1,pNode2); } } else { if (FindNode(pRoot->m_nLeft,pNode2)) { return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点 } else//如果两个节点都在右子树,则递归处理右子树 { return GetCommentParent(pRoot->m_nRight,pNode1,pNode2); } } }
方法2:
非递归解法:
先求从根节点到两个节点的路径,然后再比较对应路径的节点就行,最后一个相同的节点也就是他们在二叉树中的最低公共祖先节点
bool GetNodePath(BTree* pRoot, BTree* pNode, list<BTree*> & path) { if (pRoot == pNode) { path.push_back(pRoot); return true; } if (pRoot == NULL) { return false; } path.push_back(pRoot); bool found = false; found = GetNodePath(pRoot->m_nLeft,pNode,path); if (!found) { found = GetNodePath(pRoot->m_nRight,pNode,path); } if (!found) { path.pop_back(); } return found; } BTree* GetCommentParent2(BTree* pRoot,BTree* pNode1,BTree* pNode2) { if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL) { return NULL; } list<BTree*> path1; list<BTree*> path2; bool bResult1 = GetNodePath(pRoot,pNode1,path1); bool bResult2 = GetNodePath(pRoot,pNode2,path2); if (!bResult1 || !bResult2) { return NULL; } list<BTree*>::const_iterator iter1 = path1.begin(); list<BTree*>::const_iterator iter2 = path2.begin(); BTree* pCommentParent = NULL; while (iter1 != path1.end() && iter2 != path2.end()) { if (*iter1 == *iter2) { pCommentParent = *iter1; } iter1++; iter2++; } return pCommentParent; }
完整测试代码:
// FindCommentParent.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include <iostream> #include <list> #include <queue> using namespace std; //节点的数据结构 class BTree { public: int m_nValue; BTree* m_nLeft; BTree* m_nRight; public: BTree(int value) { m_nValue = value; } }; //二叉树的插入实现 void Insert(int value, BTree* &root) { if (root == NULL) { root = new BTree(value); } else if(value < root->m_nValue) Insert(value,root->m_nLeft); else if(value > root->m_nValue) Insert(value,root->m_nRight); else ; } bool FindNode(BTree* pRoot, BTree* pNode) { if (pRoot == NULL || pNode == NULL) { return false; } if (pRoot == pNode) { return true; } bool found = FindNode(pRoot->m_nLeft, pNode); if (!found) { found = FindNode(pRoot->m_nRight,pNode); } return found; } BTree* GetCommentParent(BTree* pRoot, BTree* pNode1, BTree* pNode2) { if (FindNode(pRoot->m_nLeft,pNode1)) { if (FindNode(pRoot->m_nRight, pNode2)) { return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点 } else//如果两个节点都在左子树,则递归处理左子树 { return GetCommentParent(pRoot->m_nLeft,pNode1,pNode2); } } else { if (FindNode(pRoot->m_nLeft,pNode2)) { return pRoot;//如果两个节点分别在根节点的左子树和右子树,则返回根节点 } else//如果两个节点都在右子树,则递归处理右子树 { return GetCommentParent(pRoot->m_nRight,pNode1,pNode2); } } } bool GetNodePath(BTree* pRoot, BTree* pNode, list<BTree*> & path) { if (pRoot == pNode) { path.push_back(pRoot); return true; } if (pRoot == NULL) { return false; } path.push_back(pRoot); bool found = false; found = GetNodePath(pRoot->m_nLeft,pNode,path); if (!found) { found = GetNodePath(pRoot->m_nRight,pNode,path); } if (!found) { path.pop_back(); } return found; } BTree* GetCommentParent2(BTree* pRoot,BTree* pNode1,BTree* pNode2) { if (pRoot == NULL || pNode1 == NULL || pNode2 == NULL) { return NULL; } list<BTree*> path1; list<BTree*> path2; bool bResult1 = GetNodePath(pRoot,pNode1,path1); bool bResult2 = GetNodePath(pRoot,pNode2,path2); if (!bResult1 || !bResult2) { return NULL; } list<BTree*>::const_iterator iter1 = path1.begin(); list<BTree*>::const_iterator iter2 = path2.begin(); BTree* pCommentParent = NULL; while (iter1 != path1.end() && iter2 != path2.end()) { if (*iter1 == *iter2) { pCommentParent = *iter1; } iter1++; iter2++; } return pCommentParent; } BTree* findOneNode(BTree* pRoot, int value) { if (pRoot == NULL) { return NULL; } queue<BTree*> q; q.push(pRoot); BTree* ret = NULL; while (!q.empty()) { BTree* pNode = q.front(); q.pop(); if (pNode->m_nValue == value) { return pNode; } else { if (pNode->m_nLeft != NULL) { q.push(pNode->m_nLeft); } if (pNode->m_nRight != NULL) { q.push(pNode->m_nRight); } } } } int _tmain(int argc, _TCHAR* argv[]) { BTree* m_pRoot = new BTree(5); Insert(6,m_pRoot); Insert(3,m_pRoot); Insert(4,m_pRoot); Insert(2,m_pRoot); BTree* node = findOneNode(m_pRoot,2); BTree* node2 = findOneNode(m_pRoot,6); BTree* pNode = GetCommentParent2(m_pRoot,node,node2); cout<<pNode->m_nValue<<endl; getchar(); return 0; }
标签:
原文地址:http://blog.csdn.net/djb100316878/article/details/42672193