码迷,mamicode.com
首页 > 编程语言 > 详细

Python实现简单的http服务器程序

时间:2015-01-13 23:20:57      阅读:348      评论:0      收藏:0      [点我收藏+]

标签:服务器   python   应用程序   

主要的需求是这样的,需要调用服务器端的程序获取GPU服务器的信息并且返回给前端显示出来,那么就需要完成一个服务器端的程序,获取服务器的数据之后将数据返回(以JSON格式)。

效果如下图:

技术分享

页面没有内容是因为服务程序还没有启动。下面完成服务器程序:

#!/usr/bin/python

from bottle import route,run,template
import os
from bottle import get,post,request
import re

gpu_info_dict = {}

@route('/')
@route('/xiandao')
def func():
	os.system("./deviceQuery > gpu_info")
	os.system(" nvidia-smi >> gpu_info")

	fs = open('gpu_info','r')
	i = 1
	for line in fs.readlines():
		a = line.strip().split(":")
		if i == 7:
			gpu_info_dict['device'] = a[-1].strip()
		elif i == 9:
			gpu_info_dict['cuda_version_number'] = '"'+a[-1].strip()+'"'
		elif i == 10:
			gpu_info_dict['global_memory'] = '"'+a[-1].strip()+'"'
		elif i == 11:
			gpu_info_dict['total_cores'] = '"'+a[-1].strip()+'"'
		elif i == 12:
			gpu_info_dict['gpu_clock_rate'] = '"'+a[-1].strip()+'"'
		elif i == 13:
			gpu_info_dict['mem_clock_rate'] = '"'+a[-1].strip()+'"'
		elif i == 14:
			gpu_info_dict['mem_bus_width'] = '"'+a[-1].strip()+'"'
		elif i == 19:
			gpu_info_dict['constant mem'] = '"'+a[-1].strip()+'"'
		elif i == 20:
			gpu_info_dict['shared_mem'] = '"'+a[-1].strip()+'"'
		elif i == 21:
			gpu_info_dict['registers_available'] = '"'+a[-1].strip()+'"'
		elif i == 50:
			l1 = line[19:32].strip().split("/")	
			gpu_info_dict['power_used'] = '"'+l1[0].strip()+'"'
			gpu_info_dict['power_capacity'] = '"'+l1[1].strip()+'"'
			l2 = line[34:55].strip().split("/")
			gpu_info_dict['mem_used'] = '"'+l2[0].strip()+'"'
			gpu_info_dict['mem_capacity'] = '"'+l2[1].strip()+'"'
		i += 1

	#生成json格式的字符串并返回
	json = "{"
	for i in gpu_info_dict:
		json += '"'+i+'"'+":"+gpu_info_dict[i]+","
	json += "}"
	return json

run(host='172.16.1.20',port=8088,debug=True)

1)bottle是一个应用于小网页应用的快速简单的框架(http://yunpan.cn/cytIgzQXPjeaS (提取码:8e71))。

2)13/14行是调用程序和命令,将获取gpu的信息并重定向到文件gpu_info中去。生成如下文件:

./deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla K40m"
  CUDA Driver Version / Runtime Version          5.5 / 5.5
  CUDA Capability Major/Minor version number:    3.5
  Total amount of global memory:                 11520 MBytes (12079136768 bytes)
  (15) Multiprocessors, (192) CUDA Cores/MP:     2880 CUDA Cores
  GPU Clock rate:                                876 MHz (0.88 GHz)
  Memory Clock rate:                             3004 Mhz
  Memory Bus Width:                              384-bit
  L2 Cache Size:                                 1572864 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device PCI Bus ID / PCI location ID:           3 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 5.5, CUDA Runtime Version = 5.5, NumDevs = 1, Device0 = Tesla K40m
Result = PASS
Tue Jan 13 21:18:02 2015       
+------------------------------------------------------+                       
| NVIDIA-SMI 5.319.37   Driver Version: 319.37         |                       
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K40m          Off  | 0000:03:00.0     Off |                    0 |
| N/A   27C    P0    61W / 235W |       69MB / 11519MB |     99%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Compute processes:                                               GPU Memory |
|  GPU       PID  Process name                                     Usage      |
|=============================================================================|
|  No running compute processes found                                         |
+-----------------------------------------------------------------------------+

3)那么现在就需要对这个文件中的关键信息进行提取,然后形成JSON格式的字符串返回。


运行程序:

技术分享

学习一下nohup命令:

nohup 的用途就是让提交的命令忽略 hangup 信号,让程序在后台运行。nohup 的使用是十分方便的,只需在要处理的命令前加上 nohup 即可,标准输出和标准错误缺省会被重定向到 nohup.out 文件中。一般我们可在结尾加上"&"来将命令同时放入后台运行,也可用">filename 2>&1"来更改缺省的重定向文件名。

[root@pvcent107 ~]# nohup ping www.ibm.com &
[1] 3059
nohup: appending output to `nohup.out'
[root@pvcent107 ~]# ps -ef |grep 3059
root      3059   984  0 21:06 pts/3    00:00:00 ping www.ibm.com
root      3067   984  0 21:06 pts/3    00:00:00 grep 3059


端口映射:

可以观察到run.py中的ip=172.16.1.20(serverA),port=8088。这个ip不能直接访问,需要跳板机(ip:http://172.21.7.224)才能访问,因此需要建立一个跳板机到serverA的一个映射,这样访问跳板机某个端口的时候就相当于去访问serverA的某个端口对应的应用程序。


那么在服务器程序启动的情况下,就可以通过网页进行IP访问了:

技术分享技术分享

成功得到了数据:)


作者:忆之独秀

邮箱:leaguenew@qq.com

注明出处:http://blog.csdn.net/lavorange/article/details/42684851


Python实现简单的http服务器程序

标签:服务器   python   应用程序   

原文地址:http://blog.csdn.net/lavorange/article/details/42684851

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!