码迷,mamicode.com
首页 > 编程语言 > 详细

Dijkstra算法

时间:2015-01-14 21:15:28      阅读:282      评论:0      收藏:0      [点我收藏+]

标签:

Dijkstra算法和BellmanFord算法是两大经典的单源最短路径算法. Bellman支持负权重的边, 不支持负环. Dijkstra算法的效率更高, 不支持负边, 用处更广泛.

Dijkstra的基本过程如下:

  1. 初始化每一个节点: 对于源节点, 我们把距离(distance)字段设为0. 其他节点的distance字段设为正无穷
  2. 用一个最小优先队列存储所有节点. 所谓最小, 就是节点的distance最小
  3. 从队列里弹出一个节点, 该节点必然满足:从源节点到该节点的最短路径已经找到. 考虑该节点的邻接节点, 并计算所有邻接节点的distance字段, 即为可能的最短路径. 比较刚刚计算好的路径长度和邻接节点原来的distance值, 取最小的一方. (贪心策略: greedy strategy)
  4. 重复执行3. 当队列为空时, 从源节点到所有其他节点的最短带权路径已经计算好了, 算法返回

技术分享

struct Vertice_comparator
{
    bool operator()(Vertice const * a, Vertice const * b)
    {
        return !!(a->distance > b->distance);
    }
};
typedef vector<Vertice*> Queue;

void Graph::dijkstra(int source_id)
{
    Vertice_comparator cmp = Vertice_comparator();
    if ((*this)[source_id] == NULL)
    {
        printf_s("找不到源节点%d\n", source_id);
        return;
    }
#pragma region 初始化
    Queue q = Queue();
    for (Node v : allVertices)
    {
        v.second->distance = v.first == source_id ? 0 : numeric_limits<int>::max();
        q.push_back(v.second);
    }
#pragma endregion 初始化
    while (!q.empty())
    {
        // 因为你要在队列外部改变Vertice*所指的内容
        // 而priority_queue又没开放重新建堆的接口
        // 所以用<algorithm>头文件里的make_heap建堆
        make_heap(q.begin(), q.end(), cmp);
        Vertice* u = q.front();
        cout << "当前结点 " <<u->id << endl;
        q.erase(q.begin()); // pop()
        for (Edge adj : u->adjacentVertices)
        {
            #pragma region 贪心
            if ((adj.target->distance) > (u->distance+adj.weight))
            {
                adj.target->distance = u->distance + adj.weight;
            }
            #pragma endregion 贪心
        }
    }
}

Dijkstra算法

标签:

原文地址:http://www.cnblogs.com/roy-mustango/p/4224758.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!