今天的题目是英文,如果懒得看的可以直接看下面我凭借过了大学英语32级的水平的精简翻译。
where xxx is the number of relations processed at the time either a sortedsequence is determined or an inconsistency is found, whichever comes first, andyyy...y is the sorted, ascending sequence.
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.
会给出两个数字,前面一个数字N表示有几个待排序元素,后面一个数字M表示有几个关系。
输出三种情况:
1. 第M对关系能得出个数字的唯一排序:12345…
2. 第X对序列与之前的X-1对序列出现矛盾
3. 排序序列不唯一
判断三种输出结果的条件如下
1. 关系加入关系集合
2. 如果加入关系时发生矛盾,则矛盾,第几个关系出现矛盾也很好判断。
3. 从最小元素开始遍历,如果最长路径包含所有元素,则序列唯一
现在的问题就是:如何整合呢?
运用某种集合S存储已排序序列(只需要表示相对关系,不需要表示绝对关系),每次添加一个新关系进入集合S
虽然说题设假设只有小于号,但是即使没有这样的提设,我们也应该把符号统一,这样编程会很方便。
对于这种元素之间有先后关系,且可能存在多个直接后继的数据结构(因为本题存在不能确定的情况,在不能确定的情况时后继和前驱都可能是多个),我们可以用AOV网来存储这种集合关系(类似的思路还有这道题:http://blog.csdn.net/ganze_12345/article/details/42780275)。(当然,用树也可以,但是如果用树会有大量的重复节点的副本存在,这是没必要的。)同时用一个一维26位的数组来计入已经加入集合的元素值。
这样一来:如果新的加入关系的两个元素都在AVO网中,一定会出现矛盾或者已经相关。
大者如果在小者的大者集合中,则是一个已经存在的关系,如果不是则一定矛盾。者是如果新加入的关系中有含未加入的元素,则一定是一种新关系,把这种新关系加入AOV网。
这样一来可以开始编程了….
#include <iostream> #include <set> #include <stack> #include <limits> #include <memory> #include <algorithm> #include <iterator> #include <string> #include <list> using namespace std; class Node; class Relation; typedef shared_ptr<Node> NodePtr; typedef shared_ptr<Relation> RelationPtr; class Node {//节点 friend ostream& operator << (ostream &, const Node &); friend class Relation; private: char value; public: enum { MINVALUE = CHAR_MIN,//标志最小节点值 OFFSET = 'A' //CHAR的偏移量 }; Node() :value(MINVALUE){} Node(char v) :value(v){} bool operator == (const Node& n) { return n.value == value; } static bool InputCheck(char v) { return v >= 'A' && v <= 'Z'; } }; ostream& operator << (ostream &out,const Node &n) {//重载标准输出流 if (n.value) return out << n.value; return out; } class Relation {//关系 friend class RelationSet; private: NodePtr less; //当前元素值 set<RelationPtr> moreSet;//大者的集合 public: //参数l表示小者,参数m表示大者 Relation(NodePtr l) :less(l) {} bool IsInMoreSet(RelationPtr m) { bool isIn = false; if (find(moreSet.begin(), moreSet.end(), m) != moreSet.end())//在集合中 return true; for (auto itr : moreSet) { isIn = isIn || itr->IsInMoreSet(m); } return isIn; } bool CheckNumber(int n, stack<char> & record, int depth = 0) {//校验,n来标记当前比较到的节点的大小位置,record来记录路径 bool isEqual = false; if (depth == n) {//最长路径 record.push(this->less->value); return true; } for (auto itr : moreSet) { if (isEqual = (isEqual || itr->CheckNumber(n, record, depth + 1))) {//在最长路劲上 if (depth) {//第一个节点是为了编程方便,不入栈 record.push(this->less->value); break; } } } return isEqual; } static bool InputChech(char sign) { return sign == '<' || sign == '>'; } static bool isLessThanSign(char sign) { return sign == '<'; } }; class RelationSet {//关系集合 static const char * const resultSet[];//结果集合 enum { CERTAIN,//确定序列 INCONSISTENCY,//结果是矛盾的 UNCERTAIN//不确定 }; static list<string> resultBuffer;//结果集合的缓存 private: bool haveChecked;//已经得出结果了 pair<RelationPtr,bool> * record;//记录已经加入的元素的,前者记录元素位置,后者记录元素是否已经加入 int elementsNumber;//元素个数 int relationsNumber;//关系个数 int relationJoin;//已加入关系数量 Relation minNode;//最小节点 string result;//本关系集的结果 pair<RelationPtr, RelationPtr > Parse(const string &expression) {//语义分析 if (expression.length() == 3) { char l = expression[0]; char s = expression[1]; char m = expression[2]; if (Node::InputCheck(l) && Node::InputCheck(m) && Relation::InputChech(s)) { if (!Relation::isLessThanSign(s)) swap(l, m);//所有的符号都调整为小于号 if (!record[l - Node::OFFSET].second)//节点未经添加 { record[l - Node::OFFSET].first = RelationPtr(new Relation(NodePtr(new Node(l)))); record[l - Node::OFFSET].second = true; } if (!record[m - Node::OFFSET].second)//节点未经添加 { record[m - Node::OFFSET].first = RelationPtr(new Relation(NodePtr(new Node(m)))); record[m - Node::OFFSET].second = true; } RelationPtr lPtr = record[l - Node::OFFSET].first, mPtr = record[m - Node::OFFSET].first; return pair<RelationPtr, RelationPtr >(lPtr,mPtr); } throw "The of content expression is error"; } throw "The length of expression is error"; } public: RelationSet(int en,int rn) :elementsNumber(en), relationsNumber(rn), minNode(NodePtr(new Node())), relationJoin(0), haveChecked(false) { record = new pair<RelationPtr, bool>[en]; memset(record, 0, en); } void JoinRelation(const string &expression) { if (++relationJoin > relationsNumber) throw "the number of relations is error"; auto elementPair = RelationSet::Parse(expression); if (elementPair.second->IsInMoreSet(elementPair.first)) {//如果小元素在大元素的子集中,则一定矛盾 haveChecked = true; char r[100]; sprintf_s(r, resultSet[RelationSet::INCONSISTENCY], relationJoin); result = r; return; } if (haveChecked)//已经得出结果了 return; //以上两个判断有先后顺序的原因是在得出唯一序列之后,新加入的关系也有可能导致矛盾,如果这样还是需要否定之前的判断 if (find(minNode.moreSet.begin(), minNode.moreSet.end(), elementPair.first) == minNode.moreSet.end())//小元素未加入 { minNode.moreSet.insert(elementPair.first); } if (find(minNode.moreSet.begin(), minNode.moreSet.end(), elementPair.second) == minNode.moreSet.end())//大元素未加入 { minNode.moreSet.insert(elementPair.second); } elementPair.first->moreSet.insert(elementPair.second); GetResult();//因为需要判断是第几个关系得出的结果,所以每次加入一对结果都判断一次。 } const string& GetResult() { if (!haveChecked) {//还没有得出结果 stack<char> sequence;//序列集合,如果要依据这个序列输出 if (minNode.CheckNumber(elementsNumber,sequence)) { haveChecked = true; char r[100]; sprintf_s(r, resultSet[RelationSet::CERTAIN], relationJoin); result = r; while (!sequence.empty()) { result += sequence.top(); sequence.pop(); } result += '.'; } else { result = resultSet[RelationSet::UNCERTAIN]; } } return result; } static void InputSet() {//集合输入 int m = 0, n = 0; while (scanf_s("%d%d",&m,&n) != EOF && m && n) {//如果m或者n为0,则退出 RelationSet temp(m, n); for (; n > 0; --n) { string expression; cin >> expression; temp.JoinRelation(expression); } RelationSet::resultBuffer.push_back(temp.GetResult()); } } static void OutPut() { copy(resultBuffer.begin(), resultBuffer.end(), ostream_iterator<string>(cout, "\n")); resultBuffer.clear();//输出完清空缓存 } ~RelationSet() { delete[] record; } }; const char * const RelationSet::resultSet[] = { "Sorted sequence determined after %d relations:", "Inconsistency found after %d relations.", "Sorted sequence cannot be determined." }; list<string> RelationSet::resultBuffer; int _tmain(int argc, _TCHAR* argv[]) { RelationSet::InputSet(); RelationSet::OutPut(); return 0; }如何过英语32级?考八次四级就行了....
原文地址:http://blog.csdn.net/ganze_12345/article/details/42914219