标签:
1.MD5代码实现
HMAC.H即MD5头文件。
#ifndef HMAC_H #define HMAC_H // POINTER defines a generic pointer type typedef unsigned char *POINTER; // UINT2 defines a two byte word typedef unsigned short int UINT2; // UINT4 defines a four byte word typedef unsigned long int UINT4; typedef struct { UINT4 state[4]; // state (ABCD) UINT4 count[2]; // number of bits, modulo 2^64 (lsb first) unsigned char buffer[64]; // input buffer } MD5_CTX; #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // F, G, H and I are basic MD5 functions. #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (z)) | ((y) & (~z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) #define I(x, y, z) ((y) ^ ((x) | (~z))) // ROTATE_LEFT rotates x left n bits. #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) // // FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. // #define FF(a, b, c, d, x, s, ac) { (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); (a) = ROTATE_LEFT ((a), (s)); (a) += (b); } #define GG(a, b, c, d, x, s, ac) { (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); (a) = ROTATE_LEFT ((a), (s)); (a) += (b); } #define HH(a, b, c, d, x, s, ac) { (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); (a) = ROTATE_LEFT ((a), (s)); (a) += (b); } #define II(a, b, c, d, x, s, ac) { (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); (a) = ROTATE_LEFT ((a), (s)); (a) += (b); } extern void MD5Init(MD5_CTX *); extern void MD5Update(MD5_CTX *, unsigned char *, unsigned int); extern void MD5Final(unsigned char [16], MD5_CTX *); extern void hmac_md5( unsigned char* text, int text_len, unsigned char* key, int key_len, unsigned char* digest ); #endif
HMAC.CPP,即MD5源码
#include "HMAC.H" #include <string.h> /* Following work is derived from "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" */ static void MD5Transform(UINT4 [4], unsigned char [64]); static void Encode(unsigned char *, UINT4 *, unsigned int); static void Decode(UINT4 *, unsigned char *, unsigned int); static void MD5_memcpy (POINTER, POINTER, unsigned int); static void MD5_memset (POINTER, int, unsigned int); /* MD5 initialization. Begins an MD5 operation, writing a new context. */ void MD5Init( MD5_CTX *context ) { context->count[0] = context->count[1] = 0; // // Load magic initialization constants. // context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; } /* MD5 block update operation. Continues an MD5 message-digest operation, processing another message block, and updating the context. */ void MD5Update( MD5_CTX *context, // context unsigned char *input, // input block unsigned int inputLen // length of input block ) { unsigned int i, index, partLen; // // Compute number of bytes mod 64 // index = (unsigned int)((context->count[0] >> 3) & 0x3F); // // Update number of bits // if ((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3)) { context->count[1]++; } context->count[1] += ((UINT4)inputLen >> 29); partLen = 64 - index; // // Transform as many times as possible. // if (inputLen >= partLen) { MD5_memcpy((POINTER)&context->buffer[index], (POINTER)input, partLen); MD5Transform (context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) { MD5Transform (context->state, &input[i]); } index = 0; } else { i = 0; } // // Buffer remaining input // MD5_memcpy((POINTER)&context->buffer[index], (POINTER)&input[i], inputLen-i); } /* MD5 finalization. Ends an MD5 message-digest operation, writing the the message digest and zeroizing the context. */ void MD5Final ( unsigned char digest[16], // message digest MD5_CTX *context // context ) { unsigned char bits[8]; unsigned int index, padLen; // // Save number of bits // Encode (bits, context->count, 8); // // Pad out to 56 mod 64. // index = (unsigned int)((context->count[0] >> 3) & 0x3f); padLen = (index < 56) ? (56 - index) : (120 - index); MD5Update (context, PADDING, padLen); // // Append length (before padding) // MD5Update (context, bits, 8); // // Store state in digest // Encode (digest, context->state, 16); // // Zeroize sensitive information. // MD5_memset ((POINTER)context, 0, sizeof (*context)); } /* MD5 basic transformation. Transforms state based on block. */ static void MD5Transform( UINT4 state[4], unsigned char block[64] ) { UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; Decode (x, block, 64); // Round 1 FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; // Zeroize sensitive information. MD5_memset ((POINTER)x, 0, sizeof (x)); } /* Encodes input (UINT4) into output (unsigned char). Assumes len is a multiple of 4. */ static void Encode( unsigned char *output, UINT4 *input, unsigned int len ) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[j] = (unsigned char)(input[i] & 0xff); output[j+1] = (unsigned char)((input[i] >> 8) & 0xff); output[j+2] = (unsigned char)((input[i] >> 16) & 0xff); output[j+3] = (unsigned char)((input[i] >> 24) & 0xff); } } /* Decodes input (unsigned char) into output (UINT4). Assumes len is a multiple of 4. */ static void Decode ( UINT4 *output, unsigned char *input, unsigned int len ) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) { output[i] = ((UINT4)input[j]) | (((UINT4)input[j+1]) << 8) | (((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24); } } static void MD5_memcpy ( POINTER output, POINTER input, unsigned int len ) { unsigned int i; for (i = 0; i < len; i++) { output[i] = input[i]; } } static void MD5_memset ( POINTER output, int value, unsigned int len ) { unsigned int i; for (i = 0; i < len; i++) { ((char *)output)[i] = (char)value; } } /* Digests a string and prints the result. */ static void MDString ( char *string ) { MD5_CTX context; unsigned char digest[16]; unsigned int len = strlen (string); MD5Init (&context); MD5Update (&context, (unsigned char*)string, len); MD5Final (digest, &context); } /* Function: hmac_md5 */ void hmac_md5( unsigned char* text, // pointer to data stream int text_len, // length of data stream unsigned char* key, // pointer to authentication key int key_len, // length of authentication key unsigned char* digest // caller digest to be filled in ) { MD5_CTX context; unsigned char k_ipad[65]; // inner padding - key XORd with ipad unsigned char k_opad[65]; // outer padding - key XORd with opad unsigned char tk[16]; int i; // // if key is longer than 64 bytes reset it to key=MD5(key) // if (key_len > 64) { MD5_CTX tctx; MD5Init(&tctx); MD5Update(&tctx, key, key_len); MD5Final(tk, &tctx); key = tk; key_len = 16; } /* the HMAC_MD5 transform looks like: MD5(K XOR opad, MD5(K XOR ipad, text)) where K is an n byte key ipad is the byte 0x36 repeated 64 times opad is the byte 0x5c repeated 64 times and text is the data being protected */ // // start out by storing key in pads // for(i=0;i<65;i++) { k_ipad[i]=k_opad[i]=0; } for(i=0;i<key_len;i++) { k_ipad[i]=k_opad[i]=key[i]; } // // XOR key with ipad and opad values // for (i=0; i<64; i++) { k_ipad[i] ^= 0x36; k_opad[i] ^= 0x5c; } // // perform inner MD5 // MD5Init(&context); MD5Update(&context, k_ipad, 64); MD5Update(&context, text, text_len); MD5Final(digest, &context); // // perform outer MD5 // MD5Init(&context); MD5Update(&context, k_opad, 64); MD5Update(&context, digest, 16); MD5Final(digest, &context); }
sha1.h
#ifndef _IPSEC_SHA1_H_ #define _IPSEC_SHA1_H_ typedef unsigned long __u32; typedef unsigned char __u8; typedef struct { __u32 state[5]; __u32 count[2]; __u8 buffer[64]; } SHA1_CTX; #if defined(rol) #undef rol #endif #define SHA1HANDSOFF #define __LITTLE_ENDIAN #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) /* blk0() and blk() perform the initial expand. */ /* I got the idea of expanding during the round function from SSLeay */ #ifdef __LITTLE_ENDIAN #define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) |(rol(block->l[i],8)&0x00FF00FF)) #else #define blk0(i) block->l[i] #endif #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] ^block->l[(i+2)&15]^block->l[i&15],1)) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); /* Hash a single 512-bit block. This is the core of the algorithm. */ void SHA1Transform(__u32 state[5], __u8 buffer[64]); void SHA1Init(SHA1_CTX *context); void SHA1Update(SHA1_CTX *context, unsigned char *data, __u32 len); void SHA1Final(unsigned char digest[20], SHA1_CTX *context); //void hmac_sha1(unsigned char *to_mac,unsigned int to_mac_length, unsigned char *key,unsigned int key_length, unsigned char *out_mac); /* Function to compute the digest */ void hmac_sha1 ( unsigned char* d, /* data */ int ld, //data len unsigned char* k, /* secret key */ int lk, //key len unsigned char* out /* output buffer, at least "t" bytes */ ); #endif /* _IPSEC_SHA1_H_ */sha1.cpp
#include "sha1.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <memory.h> #ifndef SHA_DIGESTSIZE #define SHA_DIGESTSIZE 20 #endif #ifndef SHA_BLOCKSIZE #define SHA_BLOCKSIZE 64 #endif /* Hash a single 512-bit block. This is the core of the algorithm. */ void SHA1Transform(__u32 state[5], __u8 buffer[64]) { __u32 a, b, c, d, e; typedef union { unsigned char c[64]; __u32 l[16]; } CHAR64LONG16; CHAR64LONG16* block; #ifdef SHA1HANDSOFF static unsigned char workspace[64]; block = (CHAR64LONG16*)workspace; // NdisMoveMemory(block, buffer, 64); memcpy(block, buffer, 64); #else block = (CHAR64LONG16*)buffer; #endif /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Wipe variables */ a = b = c = d = e = 0; } /* SHA1Init - Initialize new context */ void SHA1Init(SHA1_CTX* context) { /* SHA1 initialization constants */ context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } /* Run your data through this. */ void SHA1Update(SHA1_CTX* context, unsigned char* data, __u32 len) { __u32 i, j; j = context->count[0]; if ((context->count[0] += len << 3) < j) context->count[1]++; context->count[1] += (len>>29); j = (j >> 3) & 63; if ((j + len) > 63) { // NdisMoveMemory(&context->buffer[j], data, (i = 64-j)); memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(context->state, &data[i]); } j = 0; } else i = 0; // NdisMoveMemory(&context->buffer[j], &data[i], len - i); memcpy(&context->buffer[j], &data[i], len - i); } /* Add padding and return the message digest. */ void SHA1Final(unsigned char digest[20], SHA1_CTX* context) { __u32 i, j; unsigned char finalcount[8]; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ } SHA1Update(context, (unsigned char *)"\200", 1); while ((context->count[0] & 504) != 448) { SHA1Update(context, (unsigned char *)"\0", 1); } SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */ for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } /* Wipe variables */ i = j = 0; // NdisZeroMemory(context->buffer, 64); // NdisZeroMemory(context->state, 20); // NdisZeroMemory(context->count, 8); // NdisZeroMemory(&finalcount, 8); memset(context->buffer, 0x00, 64); memset(context->state, 0x00, 20); memset(context->count, 0x00, 8); memset(&finalcount, 0x00, 8); #ifdef SHA1HANDSOFF /* make SHA1Transform overwrite its own static vars */ SHA1Transform(context->state, context->buffer); #endif } /* Function to print the digest */ void pr_sha(FILE* fp, unsigned char* s, int t) { int i ; for(i=0;i<t;i++) printf("%02x",s[i]); printf("\n"); /* fprintf(fp, "0x") ; for (i = 0 ; i < t ; i++) { fprintf(fp, "%02x", s[i]) ; printf("\n"); } fprintf(fp, "0") ; */ } void truncate ( char* d1, /* data to be truncated */ char* d2, /* truncated data */ int len /* length in bytes to keep */ ) { int i ; for (i = 0 ; i < len ; i++) d2[i] = d1[i]; } /* Function to compute the digest */ /* Function to compute the digest */ void hmac_sha1 ( unsigned char* d, /* data */ int ld, //data len unsigned char* k, /* secret key */ int lk, //key len unsigned char* out /* output buffer, at least "t" bytes */ ) { int t=SHA_DIGESTSIZE; SHA1_CTX ictx, octx ; char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ; unsigned char key[SHA_DIGESTSIZE] ; char buf[SHA_BLOCKSIZE] ; int i ; if (lk > SHA_BLOCKSIZE) { SHA1_CTX tctx ; SHA1Init(&tctx) ; SHA1Update(&tctx, k, lk) ; SHA1Final(key, &tctx) ; k = key ; lk = SHA_DIGESTSIZE ; } /**** Inner Digest ****/ SHA1Init(&ictx) ; /* Pad the key for inner digest */ for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ; for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ; SHA1Update(&ictx, (unsigned char*)buf, SHA_BLOCKSIZE) ; SHA1Update(&ictx, d, ld) ; SHA1Final((unsigned char*)isha, &ictx) ; /**** Outter Digest ****/ SHA1Init(&octx) ; /* Pad the key for outter digest */ for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ; for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ; SHA1Update(&octx, (unsigned char*)buf, SHA_BLOCKSIZE) ; SHA1Update(&octx, (unsigned char*)isha, SHA_DIGESTSIZE) ; SHA1Final((unsigned char*)out, &octx) ; /* truncate and print the results */ t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ; // truncate(osha, (char*)out, t) ; // pr_sha(stdout, out, t) ; }
#include "stdio.h" #include "stdlib.h" #include "time.h" #include "sha1.h" #include "HMAC.H" #include "string.h" /* Function to print the digest */ void pr_hex(FILE* fp, unsigned char* s, int t) { int i ; for(i=0;i<t;i++) fprintf(fp, "%02x",s[i]); fprintf(fp,"\n"); } int main( ) { clock_t start, finish; double Total_time; unsigned char key[20] = "gfedcba987654321";//16bytes unsigned char data[20] = "123456789abcdefg";//16bytes unsigned char digest[20]; FILE* time_file; if ((time_file = fopen("time.txt","w")) == NULL) { printf("open time.txt fail\n"); } int data_len, key_len; fprintf(time_file, "MD5:\n"); for (data_len = 4; data_len <= 16; data_len += 4) { for (key_len = 4; key_len <= 16; key_len += 4) { /* 测量一个事件持续的时间*/ fprintf(time_file, "Time to loop 1000 times is(data_len=%2d, key_len=%2d): ",data_len, key_len); start = clock(); for (int j = 0; j < 1000; j++) { hmac_md5(data,data_len,key,key_len,digest); } finish = clock(); Total_time = (double)(finish-start) / CLOCKS_PER_SEC; fprintf(time_file, "%f seconds\n", Total_time); pr_hex(time_file, digest, 16); } } fprintf(time_file, "\n\n\n\nSHA1:\n"); for (data_len = 4; data_len <= 16; data_len += 4) { for (key_len = 4; key_len <= 16; key_len += 4) { /* 测量一个事件持续的时间*/ fprintf(time_file, "Time to loop 1000 times is(data_len=%2d, key_len=%2d): ",data_len, key_len); start = clock(); for (int j = 0; j < 1000; j++) { hmac_sha1(data,data_len,key,key_len,digest); } finish = clock(); Total_time = (double)(finish-start) / CLOCKS_PER_SEC; fprintf(time_file, "%f seconds\n", Total_time); pr_hex(time_file, digest, 20); } } pr_hex(time_file, digest, 20); return 0; }
标签:
原文地址:http://blog.csdn.net/libinjlu/article/details/42983803