标签:
题目大意:给你一串字符串,让你求出来它存在的最长连续的回文串。
解题思路:先把字符串逆序加到数组中,然后用后缀数组求解。两种方法:1,枚举排名,直接比较rank相同的字符串的位置差是不是len。如果是的话,就记录求解;2,枚举地址,求第i地址与第2*len-i+1的lcp的最大值。
PS:需要注意如果多解输出靠前的字符串。
两种写法写在了一起,分别是Del,和Del1函数。
input | output |
---|---|
ThesampletextthatcouldbereadedthesameinbothordersArozaupalanalapuazorA |
ArozaupalanalapuazorA |
#include <algorithm> #include <iostream> #include <stdlib.h> #include <string.h> #include <iomanip> #include <stdio.h> #include <string> #include <queue> #include <cmath> #include <stack> #include <ctime> #include <map> #include <set> #define eps 1e-9 ///#define M 1000100 ///#define LL __int64 #define LL long long ///#define INF 0x7ffffff #define INF 0x3f3f3f3f #define PI 3.1415926535898 #define zero(x) ((fabs(x)<eps)?0:x) #define mod 1000000007 #define Read() freopen("autocomplete.in","r",stdin) #define Write() freopen("autocomplete.out","w",stdout) #define Cin() ios::sync_with_stdio(false) using namespace std; inline int read() { char ch; bool flag = false; int a = 0; while(!((((ch = getchar()) >= '0') && (ch <= '9')) || (ch == '-'))); if(ch != '-') { a *= 10; a += ch - '0'; } else { flag = true; } while(((ch = getchar()) >= '0') && (ch <= '9')) { a *= 10; a += ch - '0'; } if(flag) { a = -a; } return a; } void write(int a) { if(a < 0) { putchar('-'); a = -a; } if(a >= 10) { write(a / 10); } putchar(a % 10 + '0'); } const int maxn = 20050; int wa[maxn], wb[maxn], wv[maxn], ws1[maxn]; int sa[maxn]; int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a+l] == r[b+l]; } void da(int *r, int *sa, int n, int m) { int i, j, p, *x = wa, *y = wb; for(i = 0; i < m; i++) ws1[i] = 0; for(i = 0; i < n; i++) ws1[x[i] = r[i]]++; for(i = 1; i < m; i++) ws1[i] += ws1[i-1]; for(i = n-1; i >= 0; i--) sa[--ws1[x[i]]] = i; for(j = 1, p = 1; p < n; j <<= 1, m = p) { for(p = 0, i = n-j; i < n; i++) y[p++] = i; for(i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j; for(i = 0; i < n; i++) wv[i] = x[y[i]]; for(i = 0; i < m; i++) ws1[i] = 0; for(i = 0; i < n; i++) ws1[wv[i]]++; for(i = 1; i < m; i++) ws1[i] += ws1[i-1]; for(i = n-1; i >= 0; i--) sa[--ws1[wv[i]]] = y[i]; for(swap(x, y), p = 1, x[sa[0]] = 0, i = 1; i < n; i++) x[sa[i]] = cmp(y, sa[i-1], sa[i], j)?p-1:p++; } } int rank[maxn], height[maxn]; void calheight(int *r, int *sa, int n) { int i, j, k = 0; for(i = 1; i <= n; i++) rank[sa[i]] = i; for(int i = 0; i < n; height[rank[i++]] = k) for(k?k--:0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k++); return ; } int dp[maxn][30]; void RMQ(int len) { for(int i = 1; i <= len; i++) dp[i][0] = height[i]; for(int j = 1; 1<<j <= maxn; j++) { for(int i = 1; i+(1<<j)-1 <= len; i++) dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1))][j-1]); } } int lg[maxn]; int querry(int l, int r) { int k = lg[r-l+1]; return min(dp[l][k], dp[r-(1<<k)+1][k]); } void init() { lg[0] = -1; for (int i = 1; i < maxn; ++i) lg[i] = lg[i>>1] + 1; } char str[maxn]; int seq[maxn]; void Del1(int n) { int Max = 0; int pos = 0; for(int i = 0; i < n; i++) { int l = rank[i]; int r = rank[2*n-i+1]; if(l > r) swap(l, r); int tmp = querry(l+1, r); if(tmp*2 > Max) { Max = tmp*2; pos = i; } l = rank[i]; r = rank[2*n-i]; if(l > r) swap(l, r); tmp = querry(l+1, r); if(tmp*2-1 > Max) { Max = tmp*2-1; pos = i; } } for (int i = pos-Max/2; Max--; ++i) putchar(seq[i]); puts(""); return ; } void Del(int n, int len) { int Max = 1; int pos = 0; for(int i = 1; i <= n; i++) { int tmp = height[i]; int l = sa[i-1]; int r = sa[i]; if(l > r) swap(l, r); if(l >= len || r <= len) continue; if(l+tmp != n-r) continue; if(tmp > Max) { Max = tmp; pos = l; } else if(tmp == Max && l < pos) pos = l; } for(int i = pos, ans = 0; ans < Max; i++, ans++) printf("%c",seq[i]); puts(""); return ; } int main() { ///init(); while(~scanf("%s", str)) { int len = strlen(str); int ans = 0; for(int i = 0; i < len; i++) seq[ans++] = str[i]; seq[ans++] = 1; for(int i = len-1; i >= 0; i--) seq[ans++] = str[i]; seq[ans] = 0; int Len = ans; da(seq, sa, Len+1, 128); calheight(seq, sa, Len); Del(ans, len);///枚举位置,判断lcp是否为位置差; ///Del1(len);///枚举位置,判断区间的lcp; } return 0; }
URAL 1297. Palindrome(后缀数组求最大回文串)
标签:
原文地址:http://blog.csdn.net/xu12110501127/article/details/43063189