标签:
原文:DES加密和解密PHP,Java,ObjectC统一的方法PHP的加解密函数
<?php class DesComponent { var $key = ‘12345678‘; function encrypt($string) { $ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF); $iv=null; foreach ($ivArray as $element) $iv.=CHR($element); $size = mcrypt_get_block_size ( MCRYPT_DES, MCRYPT_MODE_CBC ); $string = $this->pkcs5Pad ( $string, $size ); $data = mcrypt_encrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv); $data = base64_encode($data); return $data; } function decrypt($string) { $ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF); $iv=null; foreach ($ivArray as $element) $iv.=CHR($element); $string = base64_decode($string); //echo("****"); //echo($string); //echo("****"); $result = mcrypt_decrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv); $result = $this->pkcs5Unpad( $result ); return $result; } function pkcs5Pad($text, $blocksize) { $pad = $blocksize - (strlen ( $text ) % $blocksize); return $text . str_repeat ( chr ( $pad ), $pad ); } function pkcs5Unpad($text) { $pad = ord ( $text {strlen ( $text ) - 1} ); if ($pad > strlen ( $text )) return false; if (strspn ( $text, chr ( $pad ), strlen ( $text ) - $pad ) != $pad) return false; return substr ( $text, 0, - 1 * $pad ); } } $des = new DesComponent(); echo ($des->encrypt("19760519")); echo "<br />"; //die($des->decrypt("zLVdpYUM0qw=")); //die($des->decrypt("zLVdpYUM0qzEsNshEEI6Cg==")); $t2 =$des->decrypt("zLVdpYUM0qw="); echo $t2; echo "--"; echo strlen($t2); echo is_utf8($t2); echo "<br />"; $t3 = mb_convert_encoding($t2,"GB2312", "utf-8"); echo $t3; echo "--"; echo strlen($t3); echo is_utf8($t3); echo "<br />"; $t1 =$des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="); echo $t1; echo "--"; echo strlen($t1); echo is_utf8($t1); echo "<br />"; $t3 = mb_convert_encoding($t1, "utf-8","GB2312"); echo $t3; echo "--"; echo strlen($t3); echo is_utf8($t3); function is_utf8($string) { return preg_match(‘%^(?: [\x09\x0A\x0D\x20-\x7E] # ASCII | [\xC2-\xDF][\x80-\xBF] # non-overlong 2-byte | \xE0[\xA0-\xBF][\x80-\xBF] # excluding overlongs | [\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} # straight 3-byte | \xED[\x80-\x9F][\x80-\xBF] # excluding surrogates | \xF0[\x90-\xBF][\x80-\xBF]{2} # planes 1-3 | [\xF1-\xF3][\x80-\xBF]{3} # planes 4-15 | \xF4[\x80-\x8F][\x80-\xBF]{2} # plane 16 )*$%xs‘, $string); } ?>
Java的加解密函数
package ghj1976.Demo; /* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.io.UnsupportedEncodingException; /** * Utilities for encoding and decoding the Base64 representation of * binary data. See RFCs <a * href="http://www.ietf.org/rfc/rfc2045.txt">2045</a> and <a * href="http://www.ietf.org/rfc/rfc3548.txt">3548</a>. */ public class Base64 { /** * Default values for encoder/decoder flags. */ public static final int DEFAULT = 0; /** * Encoder flag bit to omit the padding ‘=‘ characters at the end * of the output (if any). */ public static final int NO_PADDING = 1; /** * Encoder flag bit to omit all line terminators (i.e., the output * will be on one long line). */ public static final int NO_WRAP = 2; /** * Encoder flag bit to indicate lines should be terminated with a * CRLF pair instead of just an LF. Has no effect if {@code * NO_WRAP} is specified as well. */ public static final int CRLF = 4; /** * Encoder/decoder flag bit to indicate using the "URL and * filename safe" variant of Base64 (see RFC 3548 section 4) where * {@code -} and {@code _} are used in place of {@code +} and * {@code /}. */ public static final int URL_SAFE = 8; /** * Flag to pass to {@link Base64OutputStream} to indicate that it * should not close the output stream it is wrapping when it * itself is closed. */ public static final int NO_CLOSE = 16; // -------------------------------------------------------- // shared code // -------------------------------------------------------- /* package */ static abstract class Coder { public byte[] output; public int op; /** * Encode/decode another block of input data. this.output is * provided by the caller, and must be big enough to hold all * the coded data. On exit, this.opwill be set to the length * of the coded data. * * @param finish true if this is the final call to process for * this object. Will finalize the coder state and * include any final bytes in the output. * * @return true if the input so far is good; false if some * error has been detected in the input stream.. */ public abstract boolean process(byte[] input, int offset, int len, boolean finish); /** * @return the maximum number of bytes a call to process() * could produce for the given number of input bytes. This may * be an overestimate. */ public abstract int maxOutputSize(int len); } // -------------------------------------------------------- // decoding // -------------------------------------------------------- /** * Decode the Base64-encoded data in input and return the data in * a new byte array. * * <p>The padding ‘=‘ characters at the end are considered optional, but * if any are present, there must be the correct number of them. * * @param str the input String to decode, which is converted to * bytes using the default charset * @param flags controls certain features of the decoded output. * Pass {@code DEFAULT} to decode standard Base64. * * @throws IllegalArgumentException if the input contains * incorrect padding */ public static byte[] decode(String str, int flags) { return decode(str.getBytes(), flags); } /** * Decode the Base64-encoded data in input and return the data in * a new byte array. * * <p>The padding ‘=‘ characters at the end are considered optional, but * if any are present, there must be the correct number of them. * * @param input the input array to decode * @param flags controls certain features of the decoded output. * Pass {@code DEFAULT} to decode standard Base64. * * @throws IllegalArgumentException if the input contains * incorrect padding */ public static byte[] decode(byte[] input, int flags) { return decode(input, 0, input.length, flags); } /** * Decode the Base64-encoded data in input and return the data in * a new byte array. * * <p>The padding ‘=‘ characters at the end are considered optional, but * if any are present, there must be the correct number of them. * * @param input the data to decode * @param offset the position within the input array at which to start * @param len the number of bytes of input to decode * @param flags controls certain features of the decoded output. * Pass {@code DEFAULT} to decode standard Base64. * * @throws IllegalArgumentException if the input contains * incorrect padding */ public static byte[] decode(byte[] input, int offset, int len, int flags) { // Allocate space for the most data the input could represent. // (It could contain less if it contains whitespace, etc.) Decoder decoder = new Decoder(flags, new byte[len*3/4]); if (!decoder.process(input, offset, len, true)) { throw new IllegalArgumentException("bad base-64"); } // Maybe we got lucky and allocated exactly enough output space. if (decoder.op == decoder.output.length) { return decoder.output; } // Need to shorten the array, so allocate a new one of the // right size and copy. byte[] temp = new byte[decoder.op]; System.arraycopy(decoder.output, 0, temp, 0, decoder.op); return temp; } /* package */ static class Decoder extends Coder { /** * Lookup table for turning bytes into their position in the * Base64 alphabet. */ private static final int DECODE[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; /** * Decode lookup table for the "web safe" variant (RFC 3548 * sec. 4) where - and _ replace + and /. */ private static final int DECODE_WEBSAFE[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63, -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; /** Non-data values in the DECODE arrays. */ private static final int SKIP = -1; private static final int EQUALS = -2; /** * States 0-3 are reading through the next input tuple. * State 4 is having read one ‘=‘ and expecting exactly * one more. * State 5 is expecting no more data or padding characters * in the input. * State 6 is the error state; an error has been detected * in the input and no future input can "fix" it. */ private int state; // state number (0 to 6) private int value; final private int[] alphabet; public Decoder(int flags, byte[] output) { this.output = output; alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE; state = 0; value = 0; } /** * @return an overestimate for the number of bytes {@code * len} bytes could decode to. */ public int maxOutputSize(int len) { return len * 3/4 + 10; } /** * Decode another block of input data. * * @return true if the state machine is still healthy. false if * bad base-64 data has been detected in the input stream. */ public boolean process(byte[] input, int offset, int len, boolean finish) { if (this.state == 6) return false; int p = offset; len += offset; // Using local variables makes the decoder about 12% // faster than if we manipulate the member variables in // the loop. (Even alphabet makes a measurable // difference, which is somewhat surprising to me since // the member variable is final.) int state = this.state; int value = this.value; int op = 0; final byte[] output = this.output; final int[] alphabet = this.alphabet; while (p < len) { // Try the fast path: we‘re starting a new tuple and the // next four bytes of the input stream are all data // bytes. This corresponds to going through states // 0-1-2-3-0. We expect to use this method for most of // the data. // // If any of the next four bytes of input are non-data // (whitespace, etc.), value will end up negative. (All // the non-data values in decode are small negative // numbers, so shifting any of them up and or‘ing them // together will result in a value with its top bit set.) // // You can remove this whole block and the output should // be the same, just slower. if (state == 0) { while (p+4 <= len && (value = ((alphabet[input[p] & 0xff] << 18) | (alphabet[input[p+1] & 0xff] << 12) | (alphabet[input[p+2] & 0xff] << 6) | (alphabet[input[p+3] & 0xff]))) >= 0) { output[op+2] = (byte) value; output[op+1] = (byte) (value >> 8); output[op] = (byte) (value >> 16); op += 3; p += 4; } if (p >= len) break; } // The fast path isn‘t available -- either we‘ve read a // partial tuple, or the next four input bytes aren‘t all // data, or whatever. Fall back to the slower state // machine implementation. int d = alphabet[input[p++] & 0xff]; switch (state) { case 0: if (d >= 0) { value = d; ++state; } else if (d != SKIP) { this.state = 6; return false; } break; case 1: if (d >= 0) { value = (value << 6) | d; ++state; } else if (d != SKIP) { this.state = 6; return false; } break; case 2: if (d >= 0) { value = (value << 6) | d; ++state; } else if (d == EQUALS) { // Emit the last (partial) output tuple; // expect exactly one more padding character. output[op++] = (byte) (value >> 4); state = 4; } else if (d != SKIP) { this.state = 6; return false; } break; case 3: if (d >= 0) { // Emit the output triple and return to state 0. value = (value << 6) | d; output[op+2] = (byte) value; output[op+1] = (byte) (value >> 8); output[op] = (byte) (value >> 16); op += 3; state = 0; } else if (d == EQUALS) { // Emit the last (partial) output tuple; // expect no further data or padding characters. output[op+1] = (byte) (value >> 2); output[op] = (byte) (value >> 10); op += 2; state = 5; } else if (d != SKIP) { this.state = 6; return false; } break; case 4: if (d == EQUALS) { ++state; } else if (d != SKIP) { this.state = 6; return false; } break; case 5: if (d != SKIP) { this.state = 6; return false; } break; } } if (!finish) { // We‘re out of input, but a future call could provide // more. this.state = state; this.value = value; this.op = op; return true; } // Done reading input. Now figure out where we are left in // the state machine and finish up. switch (state) { case 0: // Output length is a multiple of three. Fine. break; case 1: // Read one extra input byte, which isn‘t enough to // make another output byte. Illegal. this.state = 6; return false; case 2: // Read two extra input bytes, enough to emit 1 more // output byte. Fine. output[op++] = (byte) (value >> 4); break; case 3: // Read three extra input bytes, enough to emit 2 more // output bytes. Fine. output[op++] = (byte) (value >> 10); output[op++] = (byte) (value >> 2); break; case 4: // Read one padding ‘=‘ when we expected 2. Illegal. this.state = 6; return false; case 5: // Read all the padding ‘=‘s we expected and no more. // Fine. break; } this.state = state; this.op = op; return true; } } // -------------------------------------------------------- // encoding // -------------------------------------------------------- /** * Base64-encode the given data and return a newly allocated * String with the result. * * @param input the data to encode * @param flags controls certain features of the encoded output. * Passing {@code DEFAULT} results in output that * adheres to RFC 2045. */ public static String encodeToString(byte[] input, int flags) { try { return new String(encode(input, flags), "US-ASCII"); } catch (UnsupportedEncodingException e) { // US-ASCII is guaranteed to be available. throw new AssertionError(e); } } /** * Base64-encode the given data and return a newly allocated * String with the result. * * @param input the data to encode * @param offset the position within the input array at which to * start * @param len the number of bytes of input to encode * @param flags controls certain features of the encoded output. * Passing {@code DEFAULT} results in output that * adheres to RFC 2045. */ public static String encodeToString(byte[] input, int offset, int len, int flags) { try { return new String(encode(input, offset, len, flags), "US-ASCII"); } catch (UnsupportedEncodingException e) { // US-ASCII is guaranteed to be available. throw new AssertionError(e); } } /** * Base64-encode the given data and return a newly allocated * byte[] with the result. * * @param input the data to encode * @param flags controls certain features of the encoded output. * Passing {@code DEFAULT} results in output that * adheres to RFC 2045. */ public static byte[] encode(byte[] input, int flags) { return encode(input, 0, input.length, flags); } /** * Base64-encode the given data and return a newly allocated * byte[] with the result. * * @param input the data to encode * @param offset the position within the input array at which to * start * @param len the number of bytes of input to encode * @param flags controls certain features of the encoded output. * Passing {@code DEFAULT} results in output that * adheres to RFC 2045. */ public static byte[] encode(byte[] input, int offset, int len, int flags) { Encoder encoder = new Encoder(flags, null); // Compute the exact length of the array we will produce. int output_len = len / 3 * 4; // Account for the tail of the data and the padding bytes, if any. if (encoder.do_padding) { if (len % 3 > 0) { output_len += 4; } } else { switch (len % 3) { case 0: break; case 1: output_len += 2; break; case 2: output_len += 3; break; } } // Account for the newlines, if any. if (encoder.do_newline && len > 0) { output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) * (encoder.do_cr ? 2 : 1); } encoder.output = new byte[output_len]; encoder.process(input, offset, len, true); assert encoder.op == output_len; return encoder.output; } /* package */ static class Encoder extends Coder { /** * Emit a new line every this many output tuples. Corresponds to * a 76-character line length (the maximum allowable according to * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>). */ public static final int LINE_GROUPS = 19; /** * Lookup table for turning Base64 alphabet positions (6 bits) * into output bytes. */ private static final byte ENCODE[] = { ‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘, ‘H‘, ‘I‘, ‘J‘, ‘K‘, ‘L‘, ‘M‘, ‘N‘, ‘O‘, ‘P‘, ‘Q‘, ‘R‘, ‘S‘, ‘T‘, ‘U‘, ‘V‘, ‘W‘, ‘X‘, ‘Y‘, ‘Z‘, ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘, ‘k‘, ‘l‘, ‘m‘, ‘n‘, ‘o‘, ‘p‘, ‘q‘, ‘r‘, ‘s‘, ‘t‘, ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘, ‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘, ‘+‘, ‘/‘, }; /** * Lookup table for turning Base64 alphabet positions (6 bits) * into output bytes. */ private static final byte ENCODE_WEBSAFE[] = { ‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘, ‘H‘, ‘I‘, ‘J‘, ‘K‘, ‘L‘, ‘M‘, ‘N‘, ‘O‘, ‘P‘, ‘Q‘, ‘R‘, ‘S‘, ‘T‘, ‘U‘, ‘V‘, ‘W‘, ‘X‘, ‘Y‘, ‘Z‘, ‘a‘, ‘b‘, ‘c‘, ‘d‘, ‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘, ‘k‘, ‘l‘, ‘m‘, ‘n‘, ‘o‘, ‘p‘, ‘q‘, ‘r‘, ‘s‘, ‘t‘, ‘u‘, ‘v‘, ‘w‘, ‘x‘, ‘y‘, ‘z‘, ‘0‘, ‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘, ‘7‘, ‘8‘, ‘9‘, ‘-‘, ‘_‘, }; final private byte[] tail; /* package */ int tailLen; private int count; final public boolean do_padding; final public boolean do_newline; final public boolean do_cr; final private byte[] alphabet; public Encoder(int flags, byte[] output) { this.output = output; do_padding = (flags & NO_PADDING) == 0; do_newline = (flags & NO_WRAP) == 0; do_cr = (flags & CRLF) != 0; alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE; tail = new byte[2]; tailLen = 0; count = do_newline ? LINE_GROUPS : -1; } /** * @return an overestimate for the number of bytes {@code * len} bytes could encode to. */ public int maxOutputSize(int len) { return len * 8/5 + 10; } public boolean process(byte[] input, int offset, int len, boolean finish) { // Using local variables makes the encoder about 9% faster. final byte[] alphabet = this.alphabet; final byte[] output = this.output; int op = 0; int count = this.count; int p = offset; len += offset; int v = -1; // First we need to concatenate the tail of the previous call // with any input bytes available now and see if we can empty // the tail. switch (tailLen) { case 0: // There was no tail. break; case 1: if (p+2 <= len) { // A 1-byte tail with at least 2 bytes of // input available now. v = ((tail[0] & 0xff) << 16) | ((input[p++] & 0xff) << 8) | (input[p++] & 0xff); tailLen = 0; }; break; case 2: if (p+1 <= len) { // A 2-byte tail with at least 1 byte of input. v = ((tail[0] & 0xff) << 16) | ((tail[1] & 0xff) << 8) | (input[p++] & 0xff); tailLen = 0; } break; } if (v != -1) { output[op++] = alphabet[(v >> 18) & 0x3f]; output[op++] = alphabet[(v >> 12) & 0x3f]; output[op++] = alphabet[(v >> 6) & 0x3f]; output[op++] = alphabet[v & 0x3f]; if (--count == 0) { if (do_cr) output[op++] = ‘\r‘; output[op++] = ‘\n‘; count = LINE_GROUPS; } } // At this point either there is no tail, or there are fewer // than 3 bytes of input available. // The main loop, turning 3 input bytes into 4 output bytes on // each iteration. while (p+3 <= len) { v = ((input[p] & 0xff) << 16) | ((input[p+1] & 0xff) << 8) | (input[p+2] & 0xff); output[op] = alphabet[(v >> 18) & 0x3f]; output[op+1] = alphabet[(v >> 12) & 0x3f]; output[op+2] = alphabet[(v >> 6) & 0x3f]; output[op+3] = alphabet[v & 0x3f]; p += 3; op += 4; if (--count == 0) { if (do_cr) output[op++] = ‘\r‘; output[op++] = ‘\n‘; count = LINE_GROUPS; } } if (finish) { // Finish up the tail of the input. Note that we need to // consume any bytes in tail before any bytes // remaining in input; there should be at most two bytes // total. if (p-tailLen == len-1) { int t = 0; v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4; tailLen -= t; output[op++] = alphabet[(v >> 6) & 0x3f]; output[op++] = alphabet[v & 0x3f]; if (do_padding) { output[op++] = ‘=‘; output[op++] = ‘=‘; } if (do_newline) { if (do_cr) output[op++] = ‘\r‘; output[op++] = ‘\n‘; } } else if (p-tailLen == len-2) { int t = 0; v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) | (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2); tailLen -= t; output[op++] = alphabet[(v >> 12) & 0x3f]; output[op++] = alphabet[(v >> 6) & 0x3f]; output[op++] = alphabet[v & 0x3f]; if (do_padding) { output[op++] = ‘=‘; } if (do_newline) { if (do_cr) output[op++] = ‘\r‘; output[op++] = ‘\n‘; } } else if (do_newline && op > 0 && count != LINE_GROUPS) { if (do_cr) output[op++] = ‘\r‘; output[op++] = ‘\n‘; } assert tailLen == 0; assert p == len; } else { // Save the leftovers in tail to be consumed on the next // call to encodeInternal. if (p == len-1) { tail[tailLen++] = input[p]; } else if (p == len-2) { tail[tailLen++] = input[p]; tail[tailLen++] = input[p+1]; } } this.op = op; this.count = count; return true; } } private Base64() { } // don‘t instantiate }
package ghj1976.Demo; import javax.crypto.Cipher; import javax.crypto.SecretKey; import javax.crypto.SecretKeyFactory; import javax.crypto.spec.DESKeySpec; import javax.crypto.spec.IvParameterSpec; public class DES { private static String DESKey = "12345678"; // 字节数必须是8的倍数 private static byte[] iv1 = {(byte)0x12, (byte)0x34, (byte)0x56, (byte)0x78, (byte)0x90, (byte)0xAB, (byte)0xCD, (byte)0xEF}; public static void main(String[] args) { System.out.print("xyz"); DES des = new DES(); System.out.print(des.encrypt("19760519")); } public byte[] desEncrypt(byte[] plainText) throws Exception { // SecureRandom sr = new SecureRandom(); // sr.setSeed(iv); // IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8")); IvParameterSpec iv = new IvParameterSpec(iv1); DESKeySpec dks = new DESKeySpec(DESKey.getBytes()); SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES"); SecretKey key = keyFactory.generateSecret(dks); Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, key, iv); byte data[] = plainText; byte encryptedData[] = cipher.doFinal(data); return encryptedData; } public String encrypt(String input) { String result = "input"; try { result = base64Encode(desEncrypt(input.getBytes())); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } return result; } public String base64Encode(byte[] s) { if (s == null) return null; return Base64.encodeToString(s, Base64.DEFAULT); } }
Object c 的加解密函数
// // Utility.h // TheDealersForum // // Created by Hailong Zhang on 5/3/11. // Copyright 2011 Personal. All rights reserved. // #import <Foundation/Foundation.h> #import <CommonCrypto/CommonDigest.h> #import <CommonCrypto/CommonCryptor.h> @interface Utility : NSObject { } + (NSString *) udid; + (NSString *) md5:(NSString *)str; + (NSString *) doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt; + (NSString *) encryptStr:(NSString *) str; + (NSString *) decryptStr:(NSString *) str; #pragma mark Based64 + (NSString *) encodeBase64WithString:(NSString *)strData; + (NSString *) encodeBase64WithData:(NSData *)objData; + (NSData *) decodeBase64WithString:(NSString *)strBase64; @end
// // Utility.m // TheDealersForum // // Created by Hailong Zhang on 5/3/11. // Copyright 2011 Personal. All rights reserved. // #import "Utility.h" static NSString *_key = @"12345678"; static const char _base64EncodingTable[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; static const short _base64DecodingTable[256] = { -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, -2, -2, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, -2, -2, -2, -2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, -2, -2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2 }; @implementation Utility + (NSString *) udid { return [Utility encryptStr:[[UIDevice currentDevice] uniqueIdentifier]]; } + (NSString *) md5:(NSString *)str { const char *cStr = [str UTF8String]; unsigned char result[CC_MD5_DIGEST_LENGTH]; CC_MD5( cStr, strlen(cStr), result ); return [NSString stringWithFormat: @"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X", result[0], result[1], result[2], result[3], result[4], result[5], result[6], result[7], result[8], result[9], result[10], result[11], result[12], result[13], result[14], result[15] ]; } + (NSString *) encryptStr:(NSString *) str { return [Utility doCipher:str key:_key context:kCCEncrypt]; } + (NSString *) decryptStr:(NSString *) str { return [Utility doCipher:str key:_key context:kCCDecrypt]; } + (NSString *)doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt { NSStringEncoding EnC = NSUTF8StringEncoding; NSMutableData * dTextIn; if (encryptOrDecrypt == kCCDecrypt) { dTextIn = [[Utility decodeBase64WithString:sTextIn] mutableCopy]; } else{ dTextIn = [[sTextIn dataUsingEncoding: EnC] mutableCopy]; } NSMutableData * dKey = [[sKey dataUsingEncoding:EnC] mutableCopy]; [dKey setLength:kCCBlockSizeDES]; uint8_t *bufferPtr1 = NULL; size_t bufferPtrSize1 = 0; size_t movedBytes1 = 0; //uint8_t iv[kCCBlockSizeDES]; //memset((void *) iv, 0x0, (size_t) sizeof(iv)); Byte iv[] = {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF}; bufferPtrSize1 = ([sTextIn length] + kCCKeySizeDES) & ~(kCCKeySizeDES -1); bufferPtr1 = malloc(bufferPtrSize1 * sizeof(uint8_t)); memset((void *)bufferPtr1, 0x00, bufferPtrSize1); CCCrypt(encryptOrDecrypt, // CCOperation op kCCAlgorithmDES, // CCAlgorithm alg kCCOptionPKCS7Padding, // CCOptions options [dKey bytes], // const void *key [dKey length], // size_t keyLength iv, // const void *iv [dTextIn bytes], // const void *dataIn [dTextIn length], // size_t dataInLength (void *)bufferPtr1, // void *dataOut bufferPtrSize1, // size_t dataOutAvailable &movedBytes1); // size_t *dataOutMoved NSString * sResult; if (encryptOrDecrypt == kCCDecrypt){ sResult = [[[ NSString alloc] initWithData:[NSData dataWithBytes:bufferPtr1 length:movedBytes1] encoding:EnC] autorelease]; } else { NSData *dResult = [NSData dataWithBytes:bufferPtr1 length:movedBytes1]; sResult = [Utility encodeBase64WithData:dResult]; } return sResult; } + (NSString *)encodeBase64WithString:(NSString *)strData { return [Utility encodeBase64WithData:[strData dataUsingEncoding:NSUTF8StringEncoding]]; } + (NSString *)encodeBase64WithData:(NSData *)objData { const unsigned char * objRawData = [objData bytes]; char * objPointer; char * strResult; // Get the Raw Data length and ensure we actually have data int intLength = [objData length]; if (intLength == 0) return nil; // Setup the String-based Result placeholder and pointer within that placeholder strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char)); objPointer = strResult; // Iterate through everything while (intLength > 2) { // keep going until we have less than 24 bits *objPointer++ = _base64EncodingTable[objRawData[0] >> 2]; *objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)]; *objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)]; *objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f]; // we just handled 3 octets (24 bits) of data objRawData += 3; intLength -= 3; } // now deal with the tail end of things if (intLength != 0) { *objPointer++ = _base64EncodingTable[objRawData[0] >> 2]; if (intLength > 1) { *objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)]; *objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2]; *objPointer++ = ‘=‘; } else { *objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4]; *objPointer++ = ‘=‘; *objPointer++ = ‘=‘; } } // Terminate the string-based result *objPointer = ‘\0‘; // Return the results as an NSString object return [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding]; } + (NSData *)decodeBase64WithString:(NSString *)strBase64 { const char * objPointer = [strBase64 cStringUsingEncoding:NSASCIIStringEncoding]; int intLength = strlen(objPointer); int intCurrent; int i = 0, j = 0, k; unsigned char * objResult; objResult = calloc(intLength, sizeof(char)); // Run through the whole string, converting as we go while ( ((intCurrent = *objPointer++) != ‘\0‘) && (intLength-- > 0) ) { if (intCurrent == ‘=‘) { if (*objPointer != ‘=‘ && ((i % 4) == 1)) {// || (intLength > 0)) { // the padding character is invalid at this point -- so this entire string is invalid free(objResult); return nil; } continue; } intCurrent = _base64DecodingTable[intCurrent]; if (intCurrent == -1) { // we‘re at a whitespace -- simply skip over continue; } else if (intCurrent == -2) { // we‘re at an invalid character free(objResult); return nil; } switch (i % 4) { case 0: objResult[j] = intCurrent << 2; break; case 1: objResult[j++] |= intCurrent >> 4; objResult[j] = (intCurrent & 0x0f) << 4; break; case 2: objResult[j++] |= intCurrent >>2; objResult[j] = (intCurrent & 0x03) << 6; break; case 3: objResult[j++] |= intCurrent; break; } i++; } // mop things up if we ended on a boundary k = j; if (intCurrent == ‘=‘) { switch (i % 4) { case 1: // Invalid state free(objResult); return nil; case 2: k++; // flow through case 3: objResult[k] = 0; } } // Cleanup and setup the return NSData NSData * objData = [[[NSData alloc] initWithBytes:objResult length:j] autorelease]; free(objResult); return objData; } @end
标签:
原文地址:http://www.cnblogs.com/lonelyxmas/p/4249707.html