标签:
作为一个示例,假定有一个绑定的缓冲区,它支持 put
和 take
方法。如果试图在空的缓冲区上执行 take
操作,则在某一个项变得可用之前,线程将一直阻塞;如果试图在满的缓冲区上执行 put
操作,则在有空间变得可用之前,线程将一直阻塞。我们喜欢在单独的等待
set 中保存 put
线程和 take
线程,这样就可以在缓冲区中的项或空间变得可用时利用最佳规划,一次只通知一个线程。可以使用两个 Condition
实例来做到这一点。
class BoundedBuffer { final Lock lock = new ReentrantLock(); final Condition notFull = lock.newCondition(); final Condition notEmpty = lock.newCondition(); final Object[] items = new Object[100]; int putptr, takeptr, count; public void put(Object x) throws InterruptedException { lock.lock(); try { while (count == items.length) notFull.await(); items[putptr] = x; if (++putptr == items.length) putptr = 0; ++count; notEmpty.signal(); } finally { lock.unlock(); } } public Object take() throws InterruptedException { lock.lock(); try { while (count == 0) notEmpty.await(); Object x = items[takeptr]; if (++takeptr == items.length) takeptr = 0; --count; notFull.signal(); return x; } finally { lock.unlock(); } } }
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * 信号量 * * @author 林计钦 * @version 1.0 2013-7-25 下午02:03:40 */ public class SemaphoreTest { public static void main(String[] args) { // 线程池 ExecutorService exec = Executors.newCachedThreadPool(); // 只能5个线程同时访问 final Semaphore semp = new Semaphore(5); // 模拟20个客户端访问 for (int index = 0; index < 50; index++) { final int NO = index; Runnable run = new Runnable() { public void run() { try { // 获取许可 semp.acquire(); System.out.println("Accessing: " + NO); Thread.sleep((long) (Math.random() * 10000)); // 访问完后,释放 semp.release(); //availablePermits()指的是当前信号灯库中有多少个可以被使用 System.out.println("-----------------" + semp.availablePermits()); } catch (InterruptedException e) { e.printStackTrace(); } } }; exec.execute(run); } // 退出线程池 exec.shutdown(); } }
CyclicBarrier介绍 (二)
张孝祥视频学习笔记:
CyclicBarrier 表示大家彼此等待,大家集合好后才开始出发,分散活动后又在i指定地点集合碰面,这就好比整个公司的人员利用周末时间集体郊游一样,先各自从家出发到公司集合后,再同时出发到公园游玩,在指定地点集合后再同时开始就餐……
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CyclicBarrierTest {
public static void main(String [] args){
ExecutorService service=Executors.newCachedThreadPool();
final CyclicBarrier cb=new CyclicBarrier(3); //三个线程同时到达
for(int i=0;i<3;i++){
Runnable runnable=new Runnable(){
public void run(){
try {
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程"+Thread.currentThread().getName()+
"即将到达集合地点1,当前已有"+(cb.getNumberWaiting()+1)+"个已到达"+
(cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
try {
cb.await();
} catch (BrokenBarrierException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程"+Thread.currentThread().getName()+
"即将到达集合地点2,当前已有"+(cb.getNumberWaiting()+1)+"个已到达"+
(cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
try {
cb.await();
} catch (BrokenBarrierException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
Thread.sleep((long)(Math.random()*10000));
System.out.println("线程"+Thread.currentThread().getName()+
"即将到达集合地点3,当前已有"+(cb.getNumberWaiting()+1)+"个已到达"+
(cb.getNumberWaiting()==2?"都到齐了,继续走啊":"正在等候"));
try {
cb.await();
} catch (BrokenBarrierException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
};
service.execute(runnable);
}
service.shutdown();
}
}
运行结果:
线程pool-1-thread-3即将到达集合地点1,当前已有1个已到达正在等候
线程pool-1-thread-2即将到达集合地点1,当前已有2个已到达正在等候
线程pool-1-thread-1即将到达集合地点1,当前已有3个已到达都到齐了,继续走啊
线程pool-1-thread-1即将到达集合地点2,当前已有1个已到达正在等候
线程pool-1-thread-2即将到达集合地点2,当前已有2个已到达正在等候
线程pool-1-thread-3即将到达集合地点2,当前已有3个已到达都到齐了,继续走啊
线程pool-1-thread-2即将到达集合地点3,当前已有1个已到达正在等候
线程pool-1-thread-1即将到达集合地点3,当前已有2个已到达正在等候
线程pool-1-thread-3即将到达集合地点3,当前已有3个已到达都到齐了,继续走啊
/**
CountDownLatch类是一个同步计数器,构造时传入int参数,该参数就是计数器的初始值,每调用一次countDown()方法,计数器减1,计数器大于0 时,await()方法会阻塞程序继续执行
CountDownLatch如其所写,是一个倒计数的锁存器,当计数减至0时触发特定的事件。利用这种特性,可以让主线程等待子线程的结束。下面以一个模拟运动员比赛的例子加以说明。
*/
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class CountDownLatchDemo {
private static final int PLAYER_AMOUNT = 5;
public CountDownLatchDemo() {
// TODO Auto-generated constructor stub
}
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
//对于每位运动员,CountDownLatch减1后即结束比赛
CountDownLatch begin = new CountDownLatch(1);
//对于整个比赛,所有运动员结束后才算结束
CountDownLatch end = new CountDownLatch(PLAYER_AMOUNT);
Player[] plays = new Player[PLAYER_AMOUNT];
for(int i=0;i<PLAYER_AMOUNT;i++)
plays[i] = new Player(i+1,begin,end);
//设置特定的线程池,大小为5
ExecutorService exe = Executors.newFixedThreadPool(PLAYER_AMOUNT);
for(Player p:plays)
exe.execute(p); //分配线程
System.out.println("Race begins!");
begin.countDown();
try{
end.await(); //等待end状态变为0,即为比赛结束
}catch (InterruptedException e) {
// TODO: handle exception
e.printStackTrace();
}finally{
System.out.println("Race ends!");
}
exe.shutdown();
}
}
public class Player implements Runnable {
private int id;
private CountDownLatch begin;
private CountDownLatch end;
public Player(int i, CountDownLatch begin, CountDownLatch end) {
// TODO Auto-generated constructor stub
super();
this.id = i;
this.begin = begin;
this.end = end;
}
@Override
public void run() {
// TODO Auto-generated method stub
try{
begin.await(); //等待begin的状态为0
Thread.sleep((long)(Math.random()*100)); //随机分配时间,即运动员完成时间
System.out.println("Play"+id+" arrived.");
}catch (InterruptedException e) {
// TODO: handle exception
e.printStackTrace();
}finally{
end.countDown(); //使end状态减1,最终减至0
}
}
}
Exchanger可以在两个线程之间交换数据,只能是2个线程,他不支持更多的线程之间互换数据。
当线程A调用Exchange对象的exchange()方法后,他会陷入阻塞状态,直到线程B也调用了exchange()方法,然后以线程安全的方式交换数据,之后线程A和B继续运行
多线程并发常用类:condition,semaphore,CyclicBarrier,countdownlatch,exchanger使用整理
标签:
原文地址:http://blog.csdn.net/feiyang123_/article/details/43190561