码迷,mamicode.com
首页 > 编程语言 > 详细

三种常用算法概述——遍试、迭代、递归

时间:2015-01-27 23:31:50      阅读:246      评论:0      收藏:0      [点我收藏+]

标签:算法   遍试   递归   迭代   

算法:


为解决某类问题而设计的操作序列(非可执行的指令序列)

特点:有穷性、确定性、可行性、输入输出

1、遍试算法:

逻辑上:针对所有的可能的情况进行判断
形式上FOR中用IF

示例:

  • 韩信点兵
<span style="white-space:pre">	</span>using System;
	class HanXin
	{
		static void Main()
		{
			for(int n=1;n<=105;n++)
			if(n%3==2 && n%5==3 && n%7==5)
				Console.WriteLine(n);
		}
	}

  • 水仙花数:1^3+5^3+3^=153
<span style="white-space:pre">	</span>using Systen;
	public class ShuiXianHua
	{
		public static void Main(string[] args)
		{
			for(int a=1;a<=9;a++)
				for(int b=0;b<=1;b++)
					for(int c=1;c<=9;c++)
						if(a*a*a+b*b*b+c*c*c==100*a+10*b+c)
							Console.WriteLine
		}
	}

运行结果:153、370、371、407

但人们目前最多知道11位的,随着位数增大,耗时增大,然后就算不出来了。

  • 完全数:28=1+2+4+7+14
<span style="white-space:pre">	</span>using System;
	class WanQuanShu
	{
		public static void Main(string[] args)
		{
			for(int n=1;n<=9999;n++)
				if(n==divsum(n))
					Console.WriteLine(n);
		}
		public static void divsum(int n)
		{
			int s=0;
			for(int i=1;i<=n;i++)
				if (n%i==0) s+=1;
			return s;
		}
	}
  • 相亲数:M的约数之和等于N的约数之和。算法和完全数有些类似
<span style="white-space:pre">	</span>using System;
	class XiangQinShu
	{
		public static void Main(string[] args)
		{
			for(int n=1;n<=9999;n++)
			{
				int s=divsum(n)
				if(n<s && divsum(s)==n)
					Console.WriteLine(n+","+s);
			}
		}
		public static void divsum(int n)
		{
			int s=0;
			for(int i=1;i<=n;i++)
				if (n%i==0) s+=1;
			return s;
		}
	}

运行结果:220,284;1184,1210;2620,2924……

  • 验证歌德巴猜想:任何一个偶数都能表示成两个质数之和。
<span style="white-space:pre">	</span>using System;
	class GeDeBaCaiXiang
	{
		static void Main()
		{
			for(int n=6;n<=100;n+=2)
			{
				for(int a=3;a<n/2;a+=2)
					int b=n-a;
					if(IsPrime(a)&&IsPrime(b))
					{
						Console.WriteLine(n+"="+a+"+"+b);
						break;
					}
			}
		}
		static bool IsPrime(int a)
		{
			for(int i=2;i<=a/2;i++)
			{
				if(s%i==0)
					return false;
				return true;
			}
		}

	}

其他:百鸡问题、鸡兔同笼问题、百分比、佩尔方程

2、迭代:一步一步逐渐精确。

逻辑上:多次使用同一算法。

形式上:a=f(a)

示例:  

  • 求平方根

<span style="white-space:pre">	</span>using System;
	public class Sqrt
	{
	    public static void Main(string [] args){
		Console.WriteLine( sqrt( 98) );
		Console.WriteLine( Math.Sqrt(2.0) );
	    }
	 
	    static double sqrt( double a ){
		double x=1.0;
		do{
		    Console.WriteLine( x + ",   " + a/x );
		    x = ( x + a/x ) /2;
		}while( Math.Abs(x*x-a)/a > 1e-6 );
		return x;
	    }
	}

  • 倍边法求Pi

<span style="white-space:pre">	</span>using System;
	class TestDebugPi
	{
	    static void Main()
	    {
		double a=1;
		for(int n=1; n<=10; n++ )
		{
		    a = Math.Sqrt(2 - Math.Sqrt(4 - a * a));
		    double pi = a * 3 * Math.Pow(2,n);
		    Console.WriteLine( pi );
		}
		Console.WriteLine( Math.PI );
	    }
	}

其他:数字平方和、Mandelbrot集、Julia集

3、递归:分治思想,递归出口+递归主体

逻辑上:一个问题华为同样的问题

形式上:自己调用自己

示例:

  • 求阶乘
<span style="white-space:pre">	</span>using System;
	public class Fac
	{
	    public static void Main(string [] args)
	    {
		Console.WriteLine("Fac of 5 is " + fac( 5) );
	    }
	    static long fac( int n ){
		if( n==0 || n==1) return 1;
		else return fac(n-1) * n;
	    }
	}

  • 斐波那契数列

<span style="white-space:pre">	</span>using System;
	public class Fibonacci
	{
	    public static void Main(string [] args)
	    {
		Console.WriteLine("Fibonacci(10) is " + fib(10) );
	    }
	    static long fib( int n ){
		if( n==0 || n==1) return 1;
		else return fib(n-1) + fib(n-2);
	    }
	}

  • Celay树
	using System;
	using System.Drawing;
	using System.Collections;
	using System.ComponentModel;
	using System.Windows.Forms;
	using System.Data;
	 
	public class Form1 : Form
	{
	    public Form1()
	    {
		this.AutoScaleBaseSize = new Size(6, 14);
		this.ClientSize = new Size(600, 400);
		this.Paint += new PaintEventHandler(this.Form1_Paint);
	    }
	    static void Main() 
	    {
		Application.Run(new Form1());
	    }
	    private void Form1_Paint(object sender, PaintEventArgs e)
	    {
		graphics = e.Graphics ;
		drawTree( 10, 200, 310, 100, -PI/2 );
	    }
	 
	    private Graphics graphics;
	    const double PI = Math.PI;
	    double th1 = 40 * Math.PI / 180;
	    double th2 = 30 * Math.PI / 180;
	    double per1 = 0.6;
	    double per2 = 0.7;
	 
	    void drawTree(int n, 
		    double x0, double y0, double leng, double th)
	    {
		if( n==0 ) return;
	 
		double x1 = x0 + leng * Math.Cos(th);
		double y1 = y0 + leng * Math.Sin(th);
		 
		drawLine(x0, y0, x1, y1, n/2);
		 
		drawTree( n - 1, x1, y1, per1 * leng, th + th1 );
		drawTree( n - 1, x1, y1, per2 * leng, th - th2 );
	    }
	    void drawLine( double x0, double y0, double x1, double y1, int width ){
		graphics.DrawLine( 
		    new Pen(Color.Blue, width ),
		    (int)x0, (int)y0, (int)x1, (int)y1 );
	    }
	}

	Celay树2:支随机持
	using System;
	using System.Drawing;
	using System.Collections;
	using System.ComponentModel;
	using System.Windows.Forms;
	using System.Data;
	 
	public class Form1 : Form
	{
	    public Form1()
	    {
		this.AutoScaleBaseSize = new Size(6, 14);
		this.ClientSize = new Size(400, 400);
		this.Paint += new PaintEventHandler(this.Form1_Paint);
		this.Click += new EventHandler( this.Redraw );
	    }
	    static void Main() 
	    {
		Application.Run(new Form1());
	    }
	    private void Form1_Paint(object sender, PaintEventArgs e)
	    {
		graphics = e.Graphics ;
		drawTree( 10, 200, 380, 100, -PI/2 );
	    }
	    private void Redraw(object sender, EventArgs e)
	    {
		this.Invalidate();
	    }
	 
	    private Graphics graphics;
	    const double PI = Math.PI;
	    double th1 = 35 * Math.PI / 180;
	    double th2 = 25 * Math.PI / 180;
	    double per1 = 0.6;
	    double per2 = 0.7;
	 
	    Random rnd = new Random();
	    double rand()
	    {
		return rnd.NextDouble();
	    }
	 
	    void drawTree(int n, 
		    double x0, double y0, double leng, double th)
	    {
		if( n==0 ) return;
	 
		double x1 = x0 + leng * Math.Cos(th);
		double y1 = y0 + leng * Math.Sin(th);
		 
		drawLine(x0, y0, x1, y1);
		 
		drawTree( n - 1, x1, y1, per1 * leng * (0.5+rand()), th + th1* (0.5+rand()) );
		drawTree( n - 1, x1, y1, per2 * leng * (0.4+rand()), th - th2* (0.5+rand()) );
		if(rand()>0.6)
		    drawTree( n - 1, x1, y1, per2 * leng * (0.4+rand()), th - th2* (0.5+rand()) );
	    }
	    void drawLine( double x0, double y0, double x1, double y1 ){
		graphics.DrawLine( 
		    Pens.Blue,
		    (int)x0, (int)y0, (int)x1, (int)y1 );
	    }
	}

其他:Koch分形集

小结:

遍试:FOR中用IF

迭代:WHILE中a=F(a);

递归:F(n)中用F(n-1);

本文在学习唐大仕老师在网易云课堂中C#公开课后编辑而成,再此表示感谢!


三种常用算法概述——遍试、迭代、递归

标签:算法   遍试   递归   迭代   

原文地址:http://blog.csdn.net/u011528448/article/details/43205189

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!