标签:web3d webgl three.js 三维 数据可视化
商域无疆 (http://blog.csdn.net/omni360/)
本文遵循“署名-非商业用途-保持一致”创作公用协议
转载请保留此句:商域无疆 - 本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。
俺也是刚开始学,好多地儿肯定不对还请见谅.
以下代码是THREE.JS 源码文件中extras/geometries/TorusKnotGeometry.js文件的注释.
更多更新在 : https://github.com/omni360/three.js.sourcecode
/** * @author oosmoxiecode * based on http://code.google.com/p/away3d/source/browse/trunk/fp10/Away3D/src/away3d/primitives/TorusKnot.as?spec=svn2473&r=2473 */ /* ///TorusKnotGeometryy用来在三维空间内创建一个圆环结或者环形结对象.是由圆环体通过打结构成的扩展三维几何体,常用于制作管状,缠绕.带囊肿类的造型. /// 关于环形结的几何特征,参考:http://en.wikipedia.org/wiki/Torus_knot /// 各种漂亮的demo:http://katlas.math.toronto.edu/wiki/36_Torus_Knots /// /// 用法: var geometry = new THREE.TorusKnotGeometry(5,32,32); /// var material = new THREE.MeshBasicMaterial({color: 0x00ff00}); /// var sphere = new THREE.Mesh(geometry,material); /// scene.add(sphere); */ ///<summary>TorusKnotGeometry</summary> ///<param name ="radius" type="float">环形结半径</param> ///<param name ="tube" type="float">环形结弯管半径</param> ///<param name ="radialSegments" type="int">环形结圆周上细分线段数</param> ///<param name ="tubularSegments" type="int">环形结弯管圆周上的细分线段数</param> ///<param name ="p" type="float">p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,P决定垂直方向的参数.</param> ///<param name ="q" type="float">p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,Q决定水平方向的参数.</param> ///<param name ="heightScale" type="float">环形结高方向上的缩放.默认值是1</param> THREE.TorusKnotGeometry = function ( radius, tube, radialSegments, tubularSegments, p, q, heightScale ) { THREE.Geometry.call( this ); //调用Geometry对象的call方法,将原本属于Geometry的方法交给当前对象TorusKnotGeometry来使用. this.parameters = { radius: radius, //环形结半径 tube: tube, //环形结弯管半径 radialSegments: radialSegments, //环形结圆周上细分线段数 tubularSegments: tubularSegments, //环形结弯管圆周上的细分线段数 p: p, //p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,P决定垂直方向的参数. q: q, //p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,Q决定水平方向的参数. heightScale: heightScale //环形结高方向上的缩放.默认值是1 }; radius = radius || 100; //环形结半径,默认初始化为100 tube = tube || 40; //环形结弯管半径,默认初始化为40 radialSegments = radialSegments || 64; //环形结圆周上细分线段数,默认初始化为64 tubularSegments = tubularSegments || 8; //环形结弯管圆周上的细分线段数,默认初始化为8 p = p || 2; //p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,P决定垂直方向的参数.默认初始化为2 q = q || 3; //p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,Q决定水平方向的参数.默认初始化为3 heightScale = heightScale || 1; //环形结高方向上的缩放.默认值是1 var grid = new Array( radialSegments ); var tang = new THREE.Vector3(); var n = new THREE.Vector3(); var bitan = new THREE.Vector3(); //计算顶点数据,压入vertices数组 for ( var i = 0; i < radialSegments; ++ i ) { grid[ i ] = new Array( tubularSegments ); var u = i / radialSegments * 2 * p * Math.PI; var p1 = getPos( u, q, p, radius, heightScale ); var p2 = getPos( u + 0.01, q, p, radius, heightScale ); tang.subVectors( p2, p1 ); n.addVectors( p2, p1 ); bitan.crossVectors( tang, n ); n.crossVectors( bitan, tang ); bitan.normalize(); n.normalize(); for ( var j = 0; j < tubularSegments; ++ j ) { var v = j / tubularSegments * 2 * Math.PI; var cx = - tube * Math.cos( v ); // TODO: Hack: Negating it so it faces outside. var cy = tube * Math.sin( v ); var pos = new THREE.Vector3(); pos.x = p1.x + cx * n.x + cy * bitan.x; pos.y = p1.y + cx * n.y + cy * bitan.y; pos.z = p1.z + cx * n.z + cy * bitan.z; grid[ i ][ j ] = this.vertices.push( pos ) - 1; } } //计算三角面,以及贴图uv for ( var i = 0; i < radialSegments; ++ i ) { for ( var j = 0; j < tubularSegments; ++ j ) { var ip = ( i + 1 ) % radialSegments; var jp = ( j + 1 ) % tubularSegments; var a = grid[ i ][ j ]; var b = grid[ ip ][ j ]; var c = grid[ ip ][ jp ]; var d = grid[ i ][ jp ]; var uva = new THREE.Vector2( i / radialSegments, j / tubularSegments ); var uvb = new THREE.Vector2( ( i + 1 ) / radialSegments, j / tubularSegments ); var uvc = new THREE.Vector2( ( i + 1 ) / radialSegments, ( j + 1 ) / tubularSegments ); var uvd = new THREE.Vector2( i / radialSegments, ( j + 1 ) / tubularSegments ); this.faces.push( new THREE.Face3( a, b, d ) ); this.faceVertexUvs[ 0 ].push( [ uva, uvb, uvd ] ); this.faces.push( new THREE.Face3( b, c, d ) ); this.faceVertexUvs[ 0 ].push( [ uvb.clone(), uvc, uvd.clone() ] ); } } this.computeFaceNormals(); //计算面的法线 this.computeVertexNormals(); //计算顶点法线 /* ///getPos方法,已知u,in_q,in_p,radius,heightScale,获得顶点坐标的具体实现. */ ///<summary>getPos</summary> ///<param name ="u" type="float">圆周上细分线段,当前分段占等分总长度到起点的距离.</param> ///<param name ="in_p" type="float">p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,P决定垂直方向的参数.</param> ///<param name ="in_q" type="float">p\Q:对knot(节)状方式有效,控制曲线路径缠绕的圈数,Q决定水平方向的参数.</param> ///<param name ="radius" type="float">环形结半径</param> ///<param name ="heightScale" type="float">环形结高方向上的缩放.</param> function getPos( u, in_q, in_p, radius, heightScale ) { var cu = Math.cos( u ); var su = Math.sin( u ); var quOverP = in_q / in_p * u; var cs = Math.cos( quOverP ); var tx = radius * ( 2 + cs ) * 0.5 * cu; var ty = radius * ( 2 + cs ) * su * 0.5; var tz = heightScale * radius * Math.sin( quOverP ) * 0.5; return new THREE.Vector3( tx, ty, tz ); } }; /************************************************* ****下面是TorusKnotGeometry对象的方法属性定义,继承自Geometry对象. **************************************************/ THREE.TorusKnotGeometry.prototype = Object.create( THREE.Geometry.prototype );
商域无疆 (http://blog.csdn.net/omni360/)
本文遵循“署名-非商业用途-保持一致”创作公用协议
转载请保留此句:商域无疆 - 本博客专注于 敏捷开发及移动和物联设备研究:数据可视化、GOLANG、Html5、WEBGL、THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作。
以下代码是THREE.JS 源码文件中extras/geometries/TorusKnotGeometry.js文件的注释.
更多更新在 : https://github.com/omni360/three.js.sourcecode
three.js 源码注释(八十三)extras/geometries/TorusKnotGeometry.js
标签:web3d webgl three.js 三维 数据可视化
原文地址:http://blog.csdn.net/omni360/article/details/43370093