标签:
功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量
原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点
这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有向图可以有效的进行缩点(每个强连通分量缩成一个点),构成一个新的拓扑图(如BZOJ上Apio2009的那个ATM)(PS:注意考虑有些图中不能通过任意一个单独的点到达全部节点,所以不要以为直接tarjan(1)就了事了,还要来个for循环,不过实际上复杂度还是O(M),因为遍历过程中事实上每个边还是只会被走一次^_^)
1 type 2 point=^node; 3 node=record 4 g:longint; 5 next:point; 6 end; 7 8 var 9 i,j,k,l,m,n,h,t,ans:longint; 10 ss,s:array[0..100000] of boolean; 11 low,dfn,b,f:array[0..100000] of longint; 12 a:array[0..100000] of point; 13 p:point; 14 function min(x,y:longint):longint;inline; 15 begin 16 if x<y then min:=x else min:=y; 17 end; 18 function max(x,y:longint):longint;inline; 19 begin 20 if x>y then max:=x else max:=y; 21 end; 22 procedure add(x,y:longint);inline; 23 var p:point; 24 begin 25 new(p); 26 p^.g:=y; 27 p^.next:=a[x]; 28 a[x]:=p; 29 end; 30 procedure tarjan(x:longint); 31 var i,j,k:longint;p:point; 32 begin 33 inc(h);low[x]:=h;dfn[x]:=h; 34 inc(t);f[t]:=x;s[x]:=true;ss[x]:=true; 35 p:=a[x]; 36 while p<>nil do 37 begin 38 if not(s[p^.g]) then 39 begin 40 tarjan(p^.g); 41 low[x]:=min(low[x],low[p^.g]); 42 end 43 else if ss[p^.g] then low[x]:=min(low[x],dfn[P^.g]); 44 p:=p^.next; 45 end; 46 if low[x]=dfn[x] then 47 begin 48 inc(ans); 49 while f[t+1]<>x do 50 begin 51 ss[f[t]]:=false; 52 b[f[t]]:=ans; 53 dec(t); 54 end; 55 end; 56 end; 57 begin 58 readln(n,m); 59 for i:=1 to n do a[i]:=nil; 60 for i:=1 to m do 61 begin 62 readln(j,k); 63 add(j,k); 64 end; 65 fillchar(s,sizeof(s),false); 66 fillchar(ss,sizeof(ss),false); 67 fillchar(f,sizeof(f),0); 68 fillchar(low,sizeof(low),0); 69 fillchar(dfn,sizeof(dfn),0); 70 fillchar(b,sizeof(b),0); 71 for i:=1 to n do 72 if s[i]=false then tarjan(i); 73 for i:=1 to n do a[i]:=nil; 74 for i:=1 to n do add(b[i],i); 75 for i:=1 to ans do 76 begin 77 p:=a[i]; 78 write(‘No. ‘,i,‘ :‘); 79 while p<>nil do 80 begin 81 write(‘ ‘,p^.g); 82 p:=p^.next; 83 end; 84 writeln; 85 end; 86 readln; 87 end. 88
标签:
原文地址:http://www.cnblogs.com/HansBug/p/4271270.html