码迷,mamicode.com
首页 > 数据库 > 详细

Goldbach's Conjecture

时间:2015-02-04 14:26:45      阅读:183      评论:0      收藏:0      [点我收藏+]

标签:

                     Goldbach‘s Conjecture
Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u
Submit Status

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture: 
Every even number greater than 4 can be 
written as the sum of two odd prime numbers.

For example: 
8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
20 = 3 + 17 = 7 + 13. 
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
Anyway, your task is now to verify Goldbach‘s conjecture for all even numbers less than a million. 

Input

The input will contain one or more test cases. 
Each test case consists of one even integer n with 6 <= n < 1000000. 
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach‘s conjecture is wrong."

Sample Input

8
20
42
0

Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37
技术分享
 1 #include<iostream>
 2 #include<cstdlib>
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<algorithm>
 6 #include<cmath>
 7 using namespace std;
 8 bool isprime ( int k )
 9 {
10     int t = sqrt ( k + 0.5 ) ;
11     for ( int i = 2  ; i <= t ; i ++ )
12         if ( k % i == 0 )
13             return false ;
14     return true ;
15 }
16 int main()
17 {
18  //   freopen ("a.txt" , "r" , stdin );
19     int n ;
20     while ( scanf ("%d", &n) , n )
21     {
22         int i ;
23         int t = n / 2 ;
24         for ( i = 3 ; i <= t ; i += 2 )
25             if ( isprime ( i ) && isprime ( n - i ) )
26                 break ;
27         printf ( "%d = %d + %d\n" , n , i , n - i ) ;
28     }
29     return 0;
30 }
n = isprime(i) + isprime(n - i)

 

Goldbach's Conjecture

标签:

原文地址:http://www.cnblogs.com/get-an-AC-everyday/p/4272108.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!