1)视图重写
视图的类型:
a)用SPJ格式构造的视图,称为简单视图。
CREATE VIEW v1 AS SELECT x, y, z FROM t;
b)用非SPJ格式构造的视图(带有GROUPBY等操作),称为复杂视图。
CREATE VIEW v2 AS SELECT x, y, z FROM t ORDER BY x;
视图重写:
a)查询语句中出现视图对象
b)查询优化后,视图对象消失
c)消失的视图对象的查询语句, 融合到初始查询语句中
MySQL视图重写准则:
a)MySQL支持对视图进行优化。
b)优化方法是把视图转为对基表的查询,然后进行类似子查询的优化。
c)MySQL通常只能重写简单视图,复杂视图不能重写。
2)等价谓词重写:把逻辑表达式重写成等价的且效率更高的形式。
a)LIKE规则
LIKE谓词,是SQL标准支持的一种模式匹配比较操作;LIKE规则,是对LIKE谓词的等价重写,即改写LIKE谓词为其他等价的谓词,以更好地利用索引进行优化。如:
name LIKE ‘Abc%‘ 重写为: name >=‘Abc‘ AND name <‘Abd‘
应用LIKE规则的好处:转换前针对LIKE谓词,只能进行全表扫描,如果name列上存在索引,则转换后可以进行索引扫描。
LIKE匹配的表达式中,没有通配符(%或_),则与“=”等价,如:
name LIKE ‘Abc‘ 重写为: name =‘Abc‘
如果name列上存在索引,则可以利用索引提高查询效率
b)BETWEEN-AND规则
BETWEEN-AND谓词,是SQL标准支持的一种范围比较操作;
BETWEEN-AND规则,是BETWEEN-AND谓词的等价重写,即改写BETWEEN-AND谓词为其他等价的谓词,以更好地利用索引进行优化。如:
sno BETWEEN 10 AND 20 重写为: sno>=10 AND sno <=20
BETWEEN-AND规则的好处是:如果sno上建立了索引,则可以用索引扫描代替原来BETWEEN-AND谓词限定的全表扫描,从而提高了查询的效率。
c)IN转换OR规则
IN是只IN操作符操作,不是IN子查询。IN转换OR规则,就是IN谓词的OR等价重写,即改写IN谓词为等价的OR谓词,以更好地利用索引进行优化。将IN谓词等价重写为若干个OR谓词,可能会提高执行效率。如:
age IN (8,12,21) 重写为: age=8 OR age=12 OR age=21
应用IN转换OR规则后效率是否能够提高,需要看数据库对IN谓词是否只支持全表扫描。如果数据库对IN谓词只支持全表扫描且OR谓词中表的age列上存在索引,则转换后查询效率会提高。
d)IN转换ANY规则
IN转换ANY规则,就是IN谓词的ANY等价重写,即改写IN谓词为等价的ANY谓词。IN可以转换为OR,OR可以转为ANY,所以可以直接把IN转换为ANY。将IN谓词等价重写为ANY谓词,可能会提高执行效率。如:
age IN (8,12,21) 重写为: age ANY(8, 12, 21)
应用IN转换ANY规则后效率是否能够提高,依赖于数据库对于ANY操作的支持情况。
e)OR转换ANY规则
OR转换ANY规则,就是OR谓词的ANY等价重写,即改写OR谓词为等价的ANY谓词,以更好地利用MIN/MAX操作进行优化。如:
sal>1000 OR
dno=3 AND (sal>1100 OR sal>base_sal+100) OR
sal>base_sal+200 OR
sal>base_sal×2
重写为:
dno=3 AND (sal>1100 OR sal>base_sal+100) OR
sal> ANY (1000,base_sal+200,base_sal×2)
OR转换ANY规则,依赖于数据库对于ANY操作的支持情况。(PostgreSQL V9.2.3和MySQL V5.6.10目前都不支持本条规则。)
f)ALL/ANY转换集函数规则
ALL/ANY转换集函数规则,就是ALL/ANY谓词改写为等价的聚集函数MIN/MAX谓词操作,以更好地利用MIN/MAX操作进行优化。如:
sno>ANY(10, 2*5+3,sqrt(9)) 重写为: sno>sqrt(9)
上面这个ALL/ANY转换集函数规则的示例,有两点需要注意:
①示例中存在“>”和“ANY”,其意是在找出“(10, 2*5+3,sqrt(9))”中的最小值,所以可以重写为“sno>sqrt(9)”。通常,聚集函数MAX()、MIN()等的执行效率一般都比ANY、ALL谓词的执行效率高,因此在这种情况下对其进行重写,可以起到比较好的效果。
②如果有索引存在,求解MAX/MIN的效率更高。
g)NOT规则
NOT谓词的等价重写,如下:
NOT (col_1 !=2) 重写为 col_1=2
NOT (col_1 !=col_2)重写为 col_1=col_2
NOT (col_1 =col_2) 重写为 col_1!=col_2
NOT (col_1 <col_2) 重写为 col_1>=col_2
NOT (col_1 >col_2) 重写为 col_1<=col_2
NOT规则重写的好处:如果col_1上建立了索引,则可以用索引扫描代替原来的全表扫描,从而提高查询的效率。
h)OR重写并集规则
OR条件重写为并集操作,形如下SQL示例:
SELECT * FROM student
WHERE(sex=’f’ AND age>15) OR age>18;
假设所有条件表达式的列上都有索引(即sex列和age列上都存在索引),数据库可能对于示例中的WHERE语句强迫查询优化器使用顺序扫描,因为这个语句要检索的是OR操作的集合。为了能利用索引处理上面的查询,可以将语句改成如下形式:
SELECT * FROM student
WHERE sex=’f’ and age>15
UNION
SELECT * FROM student
WHERE age>18;
改写后的形式,可以分别利用列sex和age上的索引,进行索引扫描,然后再提供执行UNION操作获得最终结果。
摘自《数据库查询优化器的艺术》一书
A
原文地址:http://blog.csdn.net/fouy_yun/article/details/43603995