码迷,mamicode.com
首页 > 编程语言 > 详细

【算法】最长公共子序列(nlogn)

时间:2015-02-08 14:07:47      阅读:133      评论:0      收藏:0      [点我收藏+]

标签:

转载注明出处:http://blog.csdn.net/wdq347/article/details/9001005


 

最长公共子序列(LCS)最常见的算法是时间复杂度为O(n^2)的动态规划(DP)算法,但在James W. Hunt和Thomas G. Szymansky 的论文"A Fast Algorithm for Computing Longest Common Subsequence"中,给出了O(nlogn)下限的一种算法。

 

定理:设序列A长度为n,{A(i)},序列B长度为m,{B(i)},考虑A中所有元素在B中的序号,即A某元素在B的序号为{Pk1,Pk2,..},将这些序号按照降序排列,然后按照A中的顺序得到一个新序列,此新序列的最长严格递增子序列即对应为A、B的最长公共子序列。

 

举例来说,A={a,b,c,d,b},B={b,c,a,b},则a对应在B的序号为2,b对应序号为{3,0},c对应序号为1,d对应为空集,生成的新序列为{2, 3, 0, 1, 3, 0},其最长严格递增子序列为{0,1,3},对应的公共子序列为{b, c, b}

 

原论文的证明过程较复杂,其实可以简单的通过一一对应来证明。即证明A、B的一个公共子序列和新序列的一个严格递增子序列一一对应。

(1) A、B的一个公共子序列对应新序列的一个严格递增子序列

假设A、B的某一个公共子序列长度为k,则其公共子序列在A和B中可以写为

{Ai1,Ai2, ..., Aik}

{Bj1,Bj2, ..., Bjk}

 

如此有Ai1 = Aj1,Ai2 = Aj2, ...., Aik = Ajk, 考虑元素Bj1在B中的序号P(Bj1),则有

P(Bj1)< P(Bj2) < ... < P(Bjk)

注意此严格递增子序列属于新序列的一个子序列,因此得证

 

(2) 新序列的一个严格递增子序列对应A、B的一个公共子序列

设新序列的一个严格递增子序列{P1,P2, ..., Pk},任意两个相同的P不可能属于A中同一个元素,因为A中某元素在B中的序号按照降序排列,但此序列为严格递增序列,矛盾。所以每个P均对应于A中不同位置的元素,设为{Ai1, Ai2, ..., Aik}。

因为P是严格递增序列,则每个P也对应B中唯一的一个元素,假设为{Bj1,Bj2, ..., Bjk},由P的定义可知Ai1= Bj1, Ai2 = Bj2, ...., Aik = Bjk,因此得证。

 

实现上比较复杂,有以下几个步骤:

(1) 对序列B排序

(2) 计算A中每个元素在B中的序号,并构成新序列

(3) 使用LIS的方法计算最长严格递增子序列

(4) 获取最长公共子序列


性能分析:

(1) 排序复杂度为nlogn

(2) 获取一个元素在B中的序号的复杂度,最小为logn,最大为n,获取所有元素的复杂度为 nlogn === n*n

(3) LIS 复杂度为nlogn

因此总体复杂度在nlogn 到 n*n logn之间,但如果(2) 步骤中A中元素在B中的序号对数很少时,性能相当优越,在实际测试时,string 中均为小写字母,长度为10000的情况下,这种方法比普通的LCS快一倍以上;如果string 中的字符扩展成char,即0-255,则这种方法比普通的LCS快至少一个数量级。

【算法】最长公共子序列(nlogn)

标签:

原文地址:http://www.cnblogs.com/zhyfzy/p/4279928.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!