标签:
前面我们说了二叉树前序中序后序遍历的递归非递归算法的实现,下面我们再来说说二叉搜索树~
public class BinSearchTreeTest01 { public Point root; //访问结点 public static void visitKey(Point p){ System.out.println(p.getKey() + " "); } //构造树 public static Point Tree(){ Point a = new Point('A', null, null); Point b = new Point('B', null, a); Point c = new Point('C', null, null); Point d = new Point('D', b, c); Point e = new Point('E', null, null); Point f = new Point('F', e, null); Point g = new Point('G', null, f); Point h = new Point('H', d, g); return h;// root } //求二叉树的高度 height = max(HL , HR) + 1 public static int height(Point p){ int HL , HR , MaxH; if(p != null){ HL = height(p.getLeftChild()); HR = height(p.getRightChild()); MaxH = Math.max(HL, HR); return MaxH + 1; } return 0; } //求二叉树的叶子结点 public static void OrderLeaves(Point p){ if(p != null){ if(p.getLeftChild() == null && p.getRightChild() == null) visitKey(p); OrderLeaves(p.getLeftChild()); OrderLeaves(p.getRightChild()); } } public static void main(String[] args) { System.out.println("二叉树的高度为:" + height(Tree())); System.out.print("二叉树的叶子结点为:"); OrderLeaves(Tree()); } } class Point{ private char key; private Point LeftChild , RightChild; public Point(char key , Point LeftChild , Point RightChild){ this.key = key; this.LeftChild = LeftChild; this.RightChild = RightChild; } public Point(char key){ this(key , null ,null); } public char getKey() { return key; } public void setKey(char key) { this.key = key; } public Point getLeftChild() { return LeftChild; } public void setLeftChild(Point leftChild) { LeftChild = leftChild; } public Point getRightChild() { return RightChild; } public void setRightChild(Point rightChild) { RightChild = rightChild; } }3.下面开始今天的正题,二叉搜索树的查询,插入和删除操作
import java.util.Scanner; /** * 二叉搜索树的操作集锦 * * @author Administrator * */ class BinSearchTreeTest02 { public Point1 root; // 访问结点 public static void visitKey(Point1 p) { System.out.println(p.getKey() + " "); } // 构造树 public static Point1 Tree() { Point1 m = new Point1(4, null, null); Point1 a = new Point1(6, m, null); Point1 b = new Point1(5, null, a); Point1 c = new Point1(14, null, null); Point1 d = new Point1(10, b, c); Point1 e = new Point1(24, null, null); Point1 f = new Point1(25, e, null); Point1 g = new Point1(20, null, f); Point1 h = new Point1(15, d, g); return h;// root } // 构造空树 public static Point1 EmptyTree(int t) { Point1 a = new Point1(t, null, null); return a; } // *********************************查找操作**************************** /** * 二叉搜索树查找操作方法1 * * @param t * @param node * @return */ public static boolean contains(int t, Point1 node) { if (node == null) return false;// 结点为空,查找失败 String st = Integer.toString(t);// 把要查找的结点转化为String类型 int result = compareTo(st, node); if (result == 1) { return true; } else { return false; } } public static int compareTo(String a, Point1 p) { // String b = Integer.toString(p.getKey()); // if(a.equals(b))和下面这行是等价的 if (a.equals(p.getKey() + "")) return 1; int i = 0, j = 0; if (p.getLeftChild() != null) { i = compareTo(a, p.getLeftChild()); } if (p.getRightChild() != null) { j = compareTo(a, p.getRightChild()); } if (i == 1) { return i; } else if (j == 1) { return j; } else { return -1; } } /** * 二叉搜索树查找操作方法2(递归算法) 尾递归的方式 * * @param t * @param node * @return */ public static Point1 contains2(int t, Point1 node) { if (node == null) return null;// 结点为空,查找失败 if (t > node.getKey()) return contains2(t, node.getRightChild());// 查找右子树 else if (t < node.getKey()) return contains2(t, node.getLeftChild());// 查找左子树 else return node; } /** * 二叉搜索树查找的搜索方法2的变形,非递归算法的效率更高 将尾递归改为迭代函数 * * @param args */ public static Point1 contains3(int t, Point1 node) { while (node != null) { if (t > node.getKey()) node = node.getRightChild(); else if (t < node.getKey()) node = node.getLeftChild(); else return node; } return null; } /** * 二叉搜索树的最大元素 根据其性质可以得出二叉搜索树的最大元一定位于右子树的最右端,最小元则相反 * * @param args */ public static int findMax(Point1 point) { if (point != null) { while (point.getRightChild() != null) { point = point.getRightChild(); } } return point.getKey(); } public static int findMin(Point1 point) { if (point == null) return 0;// 先判断树是否为空 else if (point.getLeftChild() == null) return point.getKey();// 在判断左子树是否为空 else return findMin(point.getLeftChild()); } public static void main(String[] args, Point1 p) { System.out.println("此二叉树的最大结点为:" + findMax(Tree())); System.out.println("此二叉树的最小结点为:" + findMin(Tree())); @SuppressWarnings("resource") Scanner scanner = new Scanner(System.in); System.out.println("输入一个结点,将判断是否是此二叉树的结点"); int a = scanner.nextInt(); if (contains2(a, Tree()) != null) System.out.println(a + " 是此二叉树的结点"); else System.out.println(a + " 不是此二叉树的结点"); } } class Point1 { private int key; private Point1 LeftChild, RightChild; public Point1(int key, Point1 LeftChild, Point1 RightChild) { this.key = key; this.LeftChild = LeftChild; this.RightChild = RightChild; } public Point1(int key) { this(key, null, null); } public int getKey() { return key; } public void setKey(char key) { this.key = key; } public Point1 getLeftChild() { return LeftChild; } public void setLeftChild(Point1 leftChild) { LeftChild = leftChild; } public Point1 getRightChild() { return RightChild; } public void setRightChild(Point1 rightChild) { RightChild = rightChild; } }
标签:
原文地址:http://blog.csdn.net/qq_21394609/article/details/43709697