标签:
算法一: 求两条线段所在直线的交点, 再判断交点是否在两条线段上.
求直线交点时 我们可通过直线的一般方程 ax+by+c=0 求得(方程中的abc为系数,不是前面提到的端点,另外也可用点斜式方程和斜截式方程,此处暂且不论).
然后根据交点的与线段端点的位置关系来判断交点是否在线段上. 公式如下图:
算法一思路比较清晰易懂, 但是性能并不高. 因为它在不确定交点是否有效(在线段上)之前, 就先去计算了交点, 耗费了较多的时间.
如果最后发现交点无效, 那么之前的计算就白折腾了. 而且整个计算的过程也很复杂.
那么有没有一种思路,可以让我们先判断是否存在有效交点,然后再去计算它呢?
显然答案是肯定的. 于是就有了后面的一些算法.
算法二: 判断每一条线段的两个端点是否都在另一条线段的两侧, 是则求出两条线段所在直线的交点, 否则不相交.
第一步判断两个点是否在某条线段的两侧, 通常可采用投影法:
求出线段的法线向量, 然后把点投影到法线上, 最后根据投影的位置来判断点和线段的关系. 见下图
点a和点b在线段cd法线上的投影如图所示, 这时候我们还要做一次线段cd在自己法线上的投影(选择点c或点d中的一个即可).
主要用来做参考.
图中点a投影和点b投影在点c投影的两侧, 说明线段ab的端点在线段cd的两侧.
同理, 再判断一次cd是否在线段ab两侧即可.
求法线 , 求投影 什么的听起来很复杂的样子, 实际上对于我来说也确实挺复杂,在几个月前我也不会(念书那会儿的几何知识都忘光了 :‘( )‘
不过好在学习和实现起来还不算复杂, 皆有公式可循:
最后 求交点坐标的部分 所用的方法看起来有点奇怪, 有种摸不着头脑的感觉.
其实它和算法一 里面的算法是类似的,只是里面的很多计算项已经被提前计算好了.
换句话说, 算法二里求交点坐标的部分 其实也是用的直线的线性方程组来做的.
现在来简单粗略 很不科学的对比一下算法一和算法二:
1 最好情况下, 两种算法的复杂度相同
2 最坏情况, 算法一和算法二的计算量差不多
3 但是算法二提供了 更多的"提前结束条件",所以平均情况下,应该算法二更优.
实际测试下来, 实际情况也确实如此.
前面的两种算法基本上是比较常见的可以应付绝大多数情况. 但是事实上还有一种更好的算法.
这也是我最近才新学会的(我现学现卖了,大家不要介意啊...)
===============================
算法三: 判断每一条线段的两个端点是否都在另一条线段的两侧, 是则求出两条线段所在直线的交点, 否则不相交.
(咦? 怎么感觉和算法二一样啊? 不要怀疑 确实一样 ... 囧)
所谓算法三, 其实只是对算法二的一个改良, 改良的地方主要就是 :
不通过法线投影来判断点和线段的位置关系, 而是通过点和线段构成的三角形面积来判断.
先来复习下三角形面积公式: 已知三角形三点a(x,y) b(x,y) c(x,y), 三角形面积为:
因为 两向量叉乘==两向量构成的平行四边形(以两向量为邻边)的面积 , 所以上面的公式也不难理解.
而且由于向量是有方向的, 所以面积也是有方向的, 通常我们以逆时针为正, 顺时针为负数.
改良算法关键点就是:
如果"线段ab和点c构成的三角形面积"与"线段ab和点d构成的三角形面积" 构成的三角形面积的正负符号相异,
那么点c和点d位于线段ab两侧. 如下图所示:
图中虚线所示的三角形, 缠绕方向(三边的定义顺序)不同, 所以面积的正负符号不同.
算法三在算法二的基础上, 大大简化了计算步骤, 代码也更精简. 可以说,是三种算法里, 最好的.实际测试结果也是如此.
当然必须坦诚的来说, 在Javascript里, 对于普通的计算, 三种算法的时间复杂度其实是差不多的(尤其是V8引擎下).
我的测试用例里也是进行变态的百万次级别的线段相交测试 才能拉开三种算法之间的差距.
摘自:http://fins.iteye.com/blog/1522259
标签:
原文地址:http://www.cnblogs.com/wangliu/p/4292514.html