码迷,mamicode.com
首页 > 系统相关 > 详细

Hadoop学习笔记—6.Hadoop Eclipse插件的使用

时间:2015-02-22 17:20:19      阅读:312      评论:0      收藏:0      [点我收藏+]

标签:

开篇:Hadoop是一个强大的并行软件开发框架,它可以让任务在分布式集群上并行处理,从而提高执行效率。但是,它也有一些缺点,如编码、调试Hadoop程序的难度较大,这样的缺点直接导致开发人员入门门槛高,开发难度大。因此,Hadop的开发者为了降低Hadoop的难度,开发出了Hadoop Eclipse插件,它可以直接嵌入到Hadoop开发环境中,从而实现了开发环境的图形界面化,降低了编程的难度。

一、天降神器插件-Hadoop Eclipse

技术分享

  Hadoop Eclipse是Hadoop开发环境的插件,在安装该插件之前需要首先配置Hadoop的相关信息。用户在创建Hadoop程序时,Eclipse插件会自动导入Hadoop编程接口的jar文件,这样用户就可以在Eclipse插件的图形界面中进行编码、调试和运行Hadop程序,也能通过Eclipse插件查看程序的实时状态、错误信息以及运行结果。除此之外,用户还可以通过Eclipse插件对HDFS进行管理和查看。

  总而言之,Hadoop Eclipse插件不仅安装简单,使用起来也很方便。它的功能强大,特别在Hadoop编程方面为开发者降低了很大的难度,是Hadoop入门和开发的好帮手!

二、Hadoop Eclipse的开发配置

2.1 获取Hadoop Eclipse插件

  (1)为了方便,我们可以直接百度一下,我这里hadoop版本是1.1.2,因此只需要搜索一下hadoop-eclipse-plugin-1.1.2.jar即可,我们可以从下面的链接中下载该插件。

  URL:http://download.csdn.net/download/azx321/7330363

  (2)将下载下来的插件jar文件放置到eclipse的plugins目录下,然后重新启动eclipse。

技术分享

  (3)重新启动eclipse之后,单击技术分享按钮,添加hadoop eclipse插件视图按钮:首先选择Other选项,弹出如下图所示的对话框,从中选择Map/Reduce选项,然后单击OK即可。

技术分享

  (4)添加完成后,eclipse中就会多出一个Map/Reduce视图按钮,我们可以点击进入Map/Reduce工作目录视图:

技术分享

2.2 Hadoop Eclipse插件的基本配置

  (1)设置Hadoop的安装目录

  在eclipse中选择Windows→Preference按钮,弹出一个对话框,在该对话框左侧会多出一个Hadoop Map/Reduce选项,然后单击此选项,在右侧设置Hadoop的安装目录。

技术分享

  (2)设置Hadoop的集群信息

  这里需要与Hadoop集群建立连接,在Map/Reduce Locations界面中右击,弹出选项条,选择New Hadoop Location选项;

  在弹出的对话框中填写连接hadoop集群的信息,如下图所示:

技术分享

  在上图所示的红色区域是我们需要关注的地方,也是我们需要好好填写的地方。

PS:Location name: 这个随便填写,我填写的是我的Hadoop Master节点的主机名;

Map/Reduce Master 这个框里:
Host:就是jobtracker 所在的集群机器,我这里是192.168.80.100
Hort:就是jobtracker 的port,这里写的是9001(默认的端口号)
这两个参数就是mapred-site.xml里面mapred.job.tracker里面的ip和port;

 
DFS Master 这个框里:
Host:就是namenode所在的集群机器,我这里由于是伪分布,都在192.168.80.100上面
Port:就是namenode的port,这里写9000(默认的端口号)
这两个参数就是core-site.xml里面fs.default.name里面的ip和port
(Use M/R master host,这个复选框如果选上,就默认和Map/Reduce Master这个框里的host一样,如果不选择,就可以自己定义输入,这里jobtracker 和namenode在一个机器上,所以是一样的,就勾选上)

User name:这个是连接hadoop的用户名,我这里是root用户;

  接下来,单击Advanced parameters选项卡中的hadoop.tmp.dir选项,修改为你的Hadoop集群中设置的地址,我这里Hadoop集群中设置的地址是/usr/local/hadoop/tmp,然后单击Finish按钮(这个参数在core-site.xml中进行了配置)

技术分享

PS:Advanced parameters选项卡中大部分的属性都已经自动填写上了,其实就是把那几个核心xml配置文件里面的一些配置属性展示出来。

  刚刚的配置完成后,返回eclipse中,我们可以看到在Map/Reduce Locations下面就会多出来一个Hadoop-Master的连接项,这就是刚刚建立的名为Hadoop-Master的Map/Reduce Location连接,如下图所示:

技术分享

2.3 查看HDFS

  (1)通过选择eclipse左侧的DFS Locations下面的Hadoop-Master选项,就会展示出HDFS中的文件结构;

技术分享

  (2)这里在testdir文件夹处右击选择一个指定的文件,如下图所示:

技术分享

三、在Eclipse下运行WordCount程序

3.1 创建Map/Reduce项目

  选择File→Other命令,找到Map/Reduce Project,然后选择它,如下所示:

技术分享

  输入Map/Reduce工程的名称,这里取为:WordCount,单击Finish按钮完成,如下图所示:

技术分享

3.2 创建WordCount类

  这里新建一个WordCount类,输入以下代码:

技术分享
public class WordCount extends Configured implements Tool {

    /**
     * @author Edison Chou
     * @version 1.0
     */
    public static class MyMapper extends
            Mapper<LongWritable, Text, Text, LongWritable> {
        /*
         * @param KEYIN →k1 表示每一行的起始位置(偏移量offset)
         * 
         * @param VALUEIN →v1 表示每一行的文本内容
         * 
         * @param KEYOUT →k2 表示每一行中的每个单词
         * 
         * @param VALUEOUT →v2表示每一行中的每个单词的出现次数,固定值为1
         */
        protected void map(LongWritable key, Text value,
                Mapper<LongWritable, Text, Text, LongWritable>.Context context)
                throws java.io.IOException, InterruptedException {
            Counter sensitiveCounter = context.getCounter("Sensitive Words:", "Hello");
            
            String line = value.toString();
            // 这里假定Hello是一个敏感词
            if(line.contains("Hello")){
                sensitiveCounter.increment(1L);
            }
            String[] spilted = line.split(" ");
            for (String word : spilted) {
                context.write(new Text(word), new LongWritable(1L));
            }
        };
    }

    /**
     * @author Edison Chou
     * @version 1.0
     */
    public static class MyReducer extends
            Reducer<Text, LongWritable, Text, LongWritable> {
        /*
         * @param KEYIN →k2 表示每一行中的每个单词
         * 
         * @param VALUEIN →v2 表示每一行中的每个单词的出现次数,固定值为1
         * 
         * @param KEYOUT →k3表示每一行中的每个单词
         * 
         * @param VALUEOUT →v3 表示每一行中的每个单词的出现次数之和
         */
        protected void reduce(Text key,
                java.lang.Iterable<LongWritable> values,
                Reducer<Text, LongWritable, Text, LongWritable>.Context context)
                throws java.io.IOException, InterruptedException {
            long count = 0L;
            for (LongWritable value : values) {
                count += value.get();
            }
            context.write(key, new LongWritable(count));
        };
    }

    // 输入文件路径
    public static String INPUT_PATH = "hdfs://hadoop-master:9000/testdir/input/words.txt";
    // 输出文件路径
    public static String OUTPUT_PATH = "hdfs://hadoop-master:9000/testdir/output/wordcount";

    @Override
    public int run(String[] args) throws Exception {
        // 首先删除输出路径的已有生成文件
        FileSystem fs = FileSystem.get(new URI(INPUT_PATH), getConf());
        Path outPath = new Path(OUTPUT_PATH);
        if (fs.exists(outPath)) {
            fs.delete(outPath, true);
        }

        Job job = new Job(getConf(), "WordCount");
        // 设置输入目录
        FileInputFormat.setInputPaths(job, new Path(INPUT_PATH));
        // 设置自定义Mapper
        job.setMapperClass(MyMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        // 设置自定义Reducer
        job.setReducerClass(MyReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        // 设置输出目录
        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));

        System.exit(job.waitForCompletion(true) ? 0 : 1);
        return 0;
    }

    public static void main(String[] args) {
        Configuration conf = new Configuration();
        try {
            int res = ToolRunner.run(conf, new WordCount(), args);
            System.exit(res);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

}
View Code

3.3 运行WordCount程序

  选择WordCount并右击,选择Run on Hadoop方式运行,如下图所示:

技术分享

技术分享

  运行结果如下图所示:

技术分享

3.4 查看HDFS中的运行结果

  打开设定的输出文件夹output下的part-r-00000文件,就是WordCount程序的执行结果,如下图所示:

技术分享

参考资料

(1)万川梅、谢正兰,《Hadoop应用开发实战详解(修订版)》:http://item.jd.com/11508248.html

(2)cybercode,《eclipse hadoop开发环境配置》:http://blog.csdn.net/cybercode/article/details/7084603

 

Hadoop学习笔记—6.Hadoop Eclipse插件的使用

标签:

原文地址:http://www.cnblogs.com/edisonchou/p/4297521.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!