标签:
在展开之前,我们先提一下lambda函数。可以利用lambda函数的语法,定义函数。lambda例子如下:
func = lambda x,y: x + y
print func(3,4)
lambda生成一个函数对象。该函数参数为x,y,返回值为x+y。函数对象赋给func。func的调用与正常函数无异。
以上定义可以写成以下形式:
def func(x, y): return x + y
map()是Python的内置函数。它的第一个参数是一个函数对象。
re = map((lambda x: x+3),[1,3,5,6]) // 结果为[4,6,8,9]
这里,map()有两个参数,一个是lambda所定义的函数对象,一个是包含有多个元素的表。map()的功能是将函数对象依次作用于表的每一个元素,每次作用的结果储存于返回的表re中。map通过读入的函数(这里是lambda函数)来操作数据(这里“数据”是表中的每一个元素,“操作”是对每个数据加3)。
在Python 3.X中,map()的返回值是一个循环对象。可以利用list()函数,将该循环对象转换成表。
如果作为参数的函数对象有多个参数,可使用下面的方式,向map()传递函数参数的多个参数:
re = map((lambda x,y: x+y),[1,2,3],[6,7,9])
map()将每次从两个表中分别取出一个元素,带入lambda所定义的函数。
filter函数的第一个参数也是一个函数对象。它也是将作为参数的函数对象作用于多个元素。如果函数对象返回的是True,则该次的元素被储存于返回的表中。filter通过读入的函数来筛选数据。同样,在Python 3.X中,filter返回的不是表,而是循环对象。
filter函数的使用如下例:
def func(a): if a > 100: return True else: return False print filter(func,[10,56,101,500])
reduce函数的第一个参数也是函数,但有一个要求,就是这个函数自身能接收两个参数。reduce可以累计地将函数作用于各个参数。如下例:
print reduce((lambda x,y: x+y),[1,2,5,7,9])
reduce的第一个参数是lambda函数,它接收两个参数x,y, 返回x+y。
reduce将表中的前两个元素(1和2)传递给lambda函数,得到3。该返回值(3)将作为lambda函数的第一个参数,而表中的下一个元素(5)作为lambda函数的第二个参数,进行下一次的对lambda函数的调用,得到8。依次调用lambda函数,每次lambda函数的第一个参数是上一次运算结果,而第二个参数为表中的下一个元素,直到表中没有剩余元素。
上面例子,相当于(((1+2)+5)+7)+9
标签:
原文地址:http://www.cnblogs.com/hustcser/p/4301013.html