标签:线性回归 算法 机器学习
Logistic回归用来分类,线性回归用来回归。
线性回归是把让样本的属性前面加系数,相加。代价函数是误差平方和形式。所以,在最小化代价函数的时候,可以直接求导,令导数等于0,如下:
也可以使用梯度下降法,学习的梯度和Logistic回归形式一样。
线性回归的优点:计算简单。
缺点:不好处理非线性数据。
复习机器学习算法:线性回归
原文地址:http://blog.csdn.net/puqutogether/article/details/44079075