码迷,mamicode.com
首页 > 编程语言 > 详细

python分布式进程

时间:2015-03-05 17:27:57      阅读:186      评论:0      收藏:0      [点我收藏+]

标签:

多任务可以用一个进程作为Master分配任务,其它进程作为Worker执行任务来实现。

这样可以把Master放在一台电脑上,Workers放在其他电脑上实现分布式进程。

#taskmanager.py
#!/usr/bin/env python
import random, time, Queue
from multiprocessing.managers import BaseManager

task_queue = Queue.Queue()
result_queue = Queue.Queue()

class QueueManager(BaseManager):
    pass

QueueManager.register(‘get_task_queue‘, callable=lambda: task_queue)
QueueManager.register(‘get_result_queue‘, callable=lambda: result_queue)

manager = QueueManager(address=(‘‘, 5000), authkey=‘abc‘)
manager.start()
task = manager.get_task_queue()
result = manager.get_result_queue()

for i in range(10):
    n = random.randint(0, 10000)
    print(‘Put task %d...‘ % n)
    task.put(n)
print(‘Try get results...‘)
 
for i in range(10):
    r = result.get(timeout=10)
    print(‘Result: %s‘ %r)
manager.shutdown()

task_queue和result_queue是两个队列,分别存放任务和结果。它们用来进行进程间通信,交换对象。

官网上有如下例子。

from multiprocessing import Process, Queuedef f(queue):
    queue.put([42, None, ‘hello‘])
    
if __name__ == ‘__main__‘:
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, ‘hello‘]"
    p.join()

其中p是一个进程,还有一个主进程的队列q。列表[42, None, ‘hello‘]从p进程传到了主进程中。

因为是分布式的环境,放入queue中的数据需要等待Workers机器运算处理后再进行读取,这样就需要对queue用QueueManager进行封装放到网络中。这是通过

QueueManager.register(‘get_task_queue‘, callable=lambda: task_queue)

实现的。我们给task_queue的网络调用接口取了一个名字get_task_queue,而result_queue的名字是get_result_queue,方便区分对哪个queue进行操作。

task.put(n)即是对task_queue进行写入数据,相当于分配任务。而result.get()即是等待workers处理后返回的结果。

下面是Workers的代码。

#task_worker.py
#!/usr/bin/env python
import time, sys, Queue
from multiprocessing.managers import BaseManager

class QueueManager(BaseManager):
    pass

QueueManager.register(‘get_task_queue‘)
QueueManager.register(‘get_result_queue‘)

server_addr = ‘127.0.0.1‘
print(‘Connect to server %s...‘ % server_addr)
m = QueueManager(address=(server_addr, 5000), authkey=‘abc‘)
m.connect()
task = m.get_task_queue()
result = m.get_result_queue()

for i in range(10):
    try:
        n = task.get(timeout=1)
        print(‘run task %d * %d...‘ % (n, n))
        r = ‘%d * %d = %d‘ % (n, n, n*n)
        time.sleep(1)
        result.put(r)
    except Queue.Empty:
        print(‘task queue is empty.‘)
print(‘worker exit.‘)

task_worker这里的QueueManager注册的名字必须和task_manager中的一样。注意到taskworker.py中根本没有创建Queue的代码,所以,Queue对象存储在taskmanager.py进程中。对比上面的例子,可以看出Queue对象从另一个进程通过网络传递了过来。只不过这里的传递和网络通信由QueueManager完成。

task_worker的主要功能是将task_queue中分配的数据取出来进行平方运算然后放入到result_queue中。这样task_manager就能得到计算结果了。

结果如下:

技术分享

技术分享



References

[1].http://blog.csdn.net/fireroll/article/details/38895485

[2].http://www.jb51.net/article/58004.htm

[3].https://docs.python.org/3/library/multiprocessing.html?highlight=queuemanager

python分布式进程

标签:

原文地址:http://my.oschina.net/lvyi/blog/383074

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!