标签:
1.alarm
alarm()执行后,进程将继续执行,在后期(alarm以后)的执行过程中将会在seconds秒后收到信号SIGALRM并执行其处理函数。
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
void sigalrm_fn(int sig)
{
printf("alarm!\n");
alarm(2);
return;
}
int main(void)
{
signal(SIGALRM, sigalrm_fn);
alarm(1);
while(1) pause();
}
2.alarm定时器,但是只能精确到秒,然而我们如果需要用到更精准的怎么办?
int setitimer(int which, const struct itimerval *value, struct itimerval *ovalue));
setitimer()比alarm功能强大,支持3种类型的定时器:
ITIMER_REAL : 以系统真实的时间来计算,它送出SIGALRM信号。
ITIMER_VIRTUAL : -以该进程在用户态下花费的时间来计算,它送出SIGVTALRM信号。
ITIMER_PROF : 以该进程在用户态下和内核态下所费的时间来计算,它送出SIGPROF信号。
setitimer()第一个参数which指定定时器类型(上面三种之一);第二个参数是结构itimerval的一个实例;第三个参数可不做处理。
setitimer()调用成功返回0,否则返回-1。
#include <stdio.h> // for printf() #include <unistd.h> // for pause() #include <signal.h> // for signal() #include <string.h> // for memset() #include <sys/time.h> // struct itimeral. setitimer() void printMsg(int); int main() { // Get system call result to determine successful or failed int res = 0; // Register printMsg to SIGALRM signal(SIGALRM, printMsg); struct itimerval tick; // Initialize struct memset(&tick, 0, sizeof(tick)); // Timeout to run function first time tick.it_value.tv_sec = 1; // sec tick.it_value.tv_usec = 0; // micro sec. // Interval time to run function tick.it_interval.tv_sec = 1; tick.it_interval.tv_usec = 0; // Set timer, ITIMER_REAL : real-time to decrease timer, // send SIGALRM when timeout res = setitimer(ITIMER_REAL, &tick, NULL); if (res) { printf("Set timer failed!!/n"); } // Always sleep to catch SIGALRM signal while(1) { pause(); } return 0; } void printMsg(int num) { printf("%s","Hello World!!\n"); }
setitimer不会引起线程的阻塞、也不会引起线程的切换动作,就是简单的启动一个定时器,开始定时,而且这种定时应该是基于内核的,(windwos的settimer是基于一种消息的模型);setitimer虽然有三种类型ITIMER_REAL,ITIMER_VIRTUAL ITIMER_PROF,但是在同一时间同一进程,一种类型的只能有1个setitimer;
如果我们需要多个定时器怎么办?
[code=C/C++]
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<sys/time.h>
#include<errno.h>
#include<string.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/select.h>
int main(int argc, char **argv)
{
unsigned int nTimeTestSec = 0;
unsigned int nTimeTest = 0;
struct timeval tvBegin;
struct timeval tvNow;
int ret = 0;
unsigned int nDelay = 0;
struct timeval tv;
int fd = 1;
int i = 0;
struct timespec req;
unsigned int delay[20] =
{500000, 100000, 50000, 10000, 1000, 900, 500, 100, 10, 1, 0};
int nReduce = 0; //误差
fprintf(stderr, "%19s%12s%12s%12s\n", "fuction", "time(usec)", "realtime", "reduce");
fprintf(stderr, "----------------------------------------------------\n");
for (i = 0; i < 20; i++)
{
if (delay[i] <= 0)
break;
nDelay = delay[i];
//test sleep
gettimeofday(&tvBegin, NULL);
ret = usleep(nDelay);
if(ret == -1)
{
fprintf(stderr, "usleep error, errno=%d [%s]\n", errno, strerror(errno));
}
gettimeofday(&tvNow, NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;
nReduce = nTimeTest - nDelay;
fprintf (stderr, "\t usleep %8u %8u %8d\n", nDelay, nTimeTest,nReduce);
//test nanosleep
req.tv_sec = nDelay/1000000;
req.tv_nsec = (nDelay%1000000) * 1000;
gettimeofday(&tvBegin, NULL);
ret = nanosleep(&req, NULL);
if (-1 == ret)
{
fprintf (stderr, "\t nanousleep %8u not support\n", nDelay);
}
gettimeofday(&tvNow, NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;
nReduce = nTimeTest - nDelay;
fprintf (stderr, "\t nanosleep %8u %8u %8d\n", nDelay, nTimeTest,nReduce);
//test select
tv.tv_sec = 0;
tv.tv_usec = nDelay;
gettimeofday(&tvBegin, NULL);
ret = select(0, NULL, NULL, NULL, &tv);
if (-1 == ret)
{
fprintf(stderr, "select error. errno = %d [%s]\n", errno, strerror(errno));
}
gettimeofday(&tvNow, NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;
nReduce = nTimeTest - nDelay;
fprintf (stderr, "\t select %8u %8u %8d\n", nDelay, nTimeTest,nReduce);
//pselcet
req.tv_sec = nDelay/1000000;
req.tv_nsec = (nDelay%1000000) * 1000;
gettimeofday(&tvBegin, NULL);
ret = pselect(0, NULL, NULL, NULL, &req, NULL);
if (-1 == ret)
{
fprintf(stderr, "select error. errno = %d [%s]\n", errno, strerror(errno));
}
gettimeofday(&tvNow, NULL);
nTimeTest = (tvNow.tv_sec - tvBegin.tv_sec) * 1000000 + tvNow.tv_usec - tvBegin.tv_usec;
nReduce = nTimeTest - nDelay;
fprintf (stderr, "\t pselect %8u %8u %8d\n", nDelay, nTimeTest,nReduce);
fprintf (stderr, "--------------------------------\n");
}
return 0;
}
[/code]
int msSleep(long ms) {
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = ms;
return select(0, NULL, NULL, NULL, &tv);
}
上面这段代码作者有这样的话
“老大建议我们在对精度要求较高的情况下使用select()作为定时器,最大的好处就是不会影响信号处理线程安全,而且精度能得到保证。在这个实验中,当时间延时时间较长时,select和pselect表现较差,当时间小于1毫秒时,他们的精确度便提高了,表现与usleep、nanosleep不相上下,有时精度甚至超过后者。
”
查了下上面4个函数,select,和sleep是可重入函数,在使用的时候会引起线程的切换;所以有“不会影响信号处理线程安全”而usleep,nanosleep,不可重入函数,程序是在暂停状态,也就是不能线程切换;但是不知道setitimer会不会记时;
select定时器:
在编写程序时,我们经常会用到定时器。首先看看select函数原型如下:
参数说明:
slect的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。
select的第二三四个参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件。所以每次调用select前都需重新初始化fdset。
timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。
利用select实现定时器,需要利用其timeout参数,注意到:
1)select函数使用了一个结构体timeval作为其参数。
2)select函数会更新timeval的值,timeval保持的值为剩余时间。
如果我们指定了参数timeval的值,而将其他参数都置为0或者NULL,那么在时间耗尽后,select函数便返回,基于这一点,我们可以利用select实现精确定时。
timeval的结构如下:
我们可以看出其精确到microseconds也即微妙。
一、秒级定时器
二、毫秒级别定时器
三、微妙级别定时器
现在我们来编写几行代码看看定时效果吧。
注:timeval结构体中虽然指定了一个微妙级别的分辨率,但内核支持的分别率往往没有这么高,很多unix内核将超时值向上舍入成10ms的倍数。此外,加上内核调度延时现象,即定时器时间到后,内核还需要花一定时间调度相应进程的运行。因此,定时器的精度,最终还是由内核支持的分别率决定。
更好的计时器类实现:LINUX RTC机制实现计时器类
很多时候需要在LINUX下用到定时器,但像setitimer()和alarm()这样的定时器有时会和sleep()函数发生冲突,这样就给编程带来了很大的困难。
写了一个定时器的类,使用select进行精确定时。而且可以在系统中创建不限数量的定时器,且互不干扰。类的内部采用线程实现。即线程+select。代码如下:
CTimer.h:
/*
* CTimer.h
*
* Created on: 2009-7-13
* Author: DEAN
*/
//////////////////////////////////////////////////////////////////////////
// This class provide a timer to finish some works.
// Call SetTimer() to set the timer_interval. Call StartTimer()
// to enable it and call StopTimer() to stop it.
// The work you want to do should be written on OnTimer
// function.
//////////////////////////////////////////////////////////////////////////
#ifndef CTIMER_H_
#define CTIMER_H_
#include <pthread.h>
#include <sys/time.h>
class CTimer
{
private:
pthread_t thread_timer; //用于声明线程ID sizeof(pthread_t)=4;
long m_second, m_microsecond;
static void *OnTimer_stub(void *p)
{
(static_cast<CTimer*>(p))->thread_proc(); //static_cast < type-id > ( expression ) 该运算符把expression转换为type-id类型;
}
void thread_proc(); //
void OnTimer();
public:
CTimer();
CTimer(long second, long microsecond);
virtual ~CTimer();
void SetTimer(long second,long microsecond);
void StartTimer();
void StopTimer();
};
#endif /* CTIMER_H_ */
CTimer.cpp:
/*
* CTimer.cpp
*
* Created on: 2009-7-13
* Author: DEAN
*/
#include "CTimer.h"
#include <iostream>
#include <sys/select.h>
#include <time.h>
#include <pthread.h>
using namespace std;
//////////////////////////public methods//////////////////////////
CTimer::CTimer():
m_second(0), m_microsecond(0)
{
}
CTimer::CTimer(long second, long microsecond) :
m_second(second), m_microsecond(microsecond)
{
}
CTimer::~CTimer()
{
}
void CTimer::SetTimer(long second, long microsecond)
{
m_second = second;
m_microsecond = microsecond;
}
void CTimer::StartTimer()
{
pthread_create(&thread_timer, NULL, OnTimer_stub, this);
}
void CTimer::StopTimer()
{
pthread_cancel(thread_timer);
pthread_join(thread_timer, NULL); //wait the thread stopped
}
//////////////////////////private methods//////////////////////////
void CTimer::thread_proc()
{
while (true)
{
OnTimer();
pthread_testcancel();
struct timeval tempval;
tempval.tv_sec = m_second;
tempval.tv_usec = m_microsecond;
select(0, NULL, NULL, NULL, &tempval);
}
}
void CTimer::OnTimer()
{
cout<<"Timer once..."<<endl;
}
示例代码main.cpp:
/*
* main.cpp
*
* Created on: 2009-7-19
* Author: DEAN
*/
#include <iostream>
#include "CTimer.h"
using namespace std;
int main()
{
CTimer t1(1,0),t2(1,0); //构造函数,设两个定时器,以1秒为触发时间。参数1是秒,参数2是微秒。
t1.StartTimer();
t2.StartTimer();
sleep(10);
return 0;
}
使用的话其实很简单,只要写一下OnTimer()函数的内容就行了,定时器会在每个定时器触发时调用此函数。里面用到的一个点是使用类的成员函数作为线程体的执行函数,需要进行一下静态类型转换。在上面已标出:
static void *OnTimer_stub(void *p)
{
(static_cast<CTimer*>(p))->thread_proc();
}
有了这个类以后,使用定时器就方便多了:-
在LINUX中经常要使用计时器,而在LINUX环境下使用计时器不像WINDOWS环境下那样一个SETTIMER()方便,主要有三种方式:使用SLEEP/USLEEP+单独线程;SETITMER加处理信号SIGALRM,或者是RTC机制。这里我讲到的是使用RTC机制实现计时器类。这种方法最为优越,它与传统意义上的SLEEP和SIGALRM信号是分离的,它的运行不受SLEEP的影响,而像SETITMER等都会受到SLEEP的影响,因为它们使用的是同一时钟。
以前用select实现的计时器类(http://hi.baidu.com/susdisk/blog/item/03f70d35e8e2e182a61e1288.html)其实并不是真正的计时器,它是一个循环,只是在处理完一次ONTIMER()事件后停下了一秒,然后再接着一次ONTIMER(),这其实并不是真正的计时器。真正的计时器应该是不管是否在处理ONTIMER()事件,它都会触发。
RTC(real-time clock)。现在可以使用LINUX下的RTC机制来编写计时器类,这个类是完全意义上的计时器,经过测试,也基本不占用cpu时间,因为它采用的是底层的硬件时钟,rtc的文档中说的很明白,它与系统时钟最大的区别在于即使它在机器耗能非常低的情况下,也会触发此时钟信号。它也与SLEEP、SETITIMER等函数是完全独立的,就是说,使用这个计时器类,你依然可以使用各种SLEEP函数等,互不影响,这一点我觉得是最重要的。
参考:
http://www.cnblogs.com/processakai/archive/2012/04/11/2442294.html
http://blog.csdn.net/lxmky/article/details/7669296
标签:
原文地址:http://www.cnblogs.com/youxin/p/4324366.html