码迷,mamicode.com
首页 > 编程语言 > 详细

多线程为什么跑的比单线程还要慢的情况分析及验证

时间:2015-03-11 23:29:07      阅读:4734      评论:0      收藏:0      [点我收藏+]

标签:多线程   性能   效率   编程   java   


2014-05-04 07:56:50cnblogs.com-Ethan Cai-点击数: 306

“多个人干活比一个人干活要快,多线程并行执行也比单线程要快”这是我学习编程长期以来的想法。然而在实际的开发过程中,并不是所有情况下都是这样。先看看下面的程序(点击下载):

技术分享

ThreadTester是所有Tester的基类。所有的Tester都干的是同样一件事情,把counter增加到100000000,每次只能加1。

   1:publicabstractclass ThreadTester
   2:     {
   3:publicconstlong MAX_COUNTER_NUMBER = 100000000;
   4:  
   5:privatelong _counter = 0;
   6:  
   7://获得计数
   8:publicvirtuallong GetCounter()
   9:         {
  10:returnthis._counter;
  11:         }
  12:  
  13://增加计数器
  14:protectedvirtualvoid IncreaseCounter()
  15:         {
  16:this._counter += 1;
  17:         }
  18:  
  19://启动测试
  20:publicabstractvoid Start();
  21:  
  22://获得Counter从开始增加到现在的数字所耗的时间
  23:publicabstractlong GetElapsedMillisecondsOfIncreaseCounter();
  24:  
  25://测试是否正在运行
  26:publicabstractbool IsTesterRunning();
  27:     }

SingleThreadTester是单线程计数。

   1:class SingleThreadTester : ThreadTester
   2:     {
   3:private Stopwatch _aStopWatch = new Stopwatch();
   4:  
   5:publicoverridevoid Start()
   6:         {
   7:             _aStopWatch.Start();
   8:  
   9:             Thread aThread = new Thread(() => WorkInThread());
  10:             aThread.Start();
  11:         }
  12:  
  13:publicoverridelong GetElapsedMillisecondsOfIncreaseCounter()
  14:         {
  15:returnthis._aStopWatch.ElapsedMilliseconds;
  16:         }
  17:  
  18:publicoverridebool IsTesterRunning()
  19:         {
  20:return _aStopWatch.IsRunning;
  21:         }
  22:  
  23:privatevoid WorkInThread()
  24:         {
  25:while (true)
  26:             {
  27:if (this.GetCounter() > ThreadTester.MAX_COUNTER_NUMBER)
  28:                 {
  29:                     _aStopWatch.Stop();
  30:break;
  31:                 }
  32:  
  33:this.IncreaseCounter();
  34:             }
  35:         }
  36:     }

TwoThreadSwitchTester是两个线程交替计数。

   1:class TwoThreadSwitchTester : ThreadTester
   2:     {
   3:private Stopwatch _aStopWatch = new Stopwatch();
   4:private AutoResetEvent _autoResetEvent = new AutoResetEvent(false);
   5:  
   6:publicoverridevoid Start()
   7:         {
   8:             _aStopWatch.Start();
   9:  
  10:             Thread aThread1 = new Thread(() => Work1InThread());
  11:             aThread1.Start();
  12:  
  13:             Thread aThread2 = new Thread(() => Work2InThread());
  14:             aThread2.Start();
  15:         }
  16:  
  17:publicoverridelong GetElapsedMillisecondsOfIncreaseCounter()
  18:         {
  19:returnthis._aStopWatch.ElapsedMilliseconds;
  20:         }
  21:  
  22:publicoverridebool IsTesterRunning()
  23:         {
  24:return _aStopWatch.IsRunning;
  25:         }
  26:  
  27:privatevoid Work1InThread()
  28:         {
  29:while (true)
  30:             {
  31:                 _autoResetEvent.WaitOne();
  32:
  33:this.IncreaseCounter();
  34:  
  35:if (this.GetCounter() > ThreadTester.MAX_COUNTER_NUMBER)
  36:                 {
  37:                     _aStopWatch.Stop();
  38:break;
  39:                 }
  40:  
  41:                 _autoResetEvent.Set();
  42:             }
  43:         }
  44:  
  45:privatevoid Work2InThread()
  46:         {
  47:while (true)
  48:             {
  49:                 _autoResetEvent.Set();
  50:                 _autoResetEvent.WaitOne();
  51:this.IncreaseCounter();
  52:  
  53:if (this.GetCounter() > ThreadTester.MAX_COUNTER_NUMBER)
  54:                 {
  55:                     _aStopWatch.Stop();
  56:break;
  57:                 }
  58:             }
  59:         }
  60:     }

MultiThreadTester可以指定线程数,多个线程争抢计数。

   1:class MultiThreadTester : ThreadTester
   2:     {
   3:private Stopwatch _aStopWatch = new Stopwatch();
   4:privatereadonlyint _threadCount = 0;
   5:privatereadonlyobject _counterLock = newobject();
   6:
   7:public MultiThreadTester(int threadCount)
   8:         {
   9:this._threadCount = threadCount;
  10:         }
  11:  
  12:publicoverridevoid Start()
  13:         {
  14:             _aStopWatch.Start();
  15:  
  16:for (int i = 0; i < _threadCount; i++)
  17:             {
  18:                 Thread aThread = new Thread(() => WorkInThread());
  19:                 aThread.Start();
  20:             }
  21:         }
  22:  
  23:publicoverridelong GetElapsedMillisecondsOfIncreaseCounter()
  24:         {
  25:returnthis._aStopWatch.ElapsedMilliseconds;
  26:         }
  27:  
  28:publicoverridebool IsTesterRunning()
  29:         {
  30:return _aStopWatch.IsRunning;
  31:         }
  32:  
  33:privatevoid WorkInThread()
  34:         {
  35:while (true)
  36:             {
  37:lock (_counterLock)
  38:                 {
  39:if (this.GetCounter() > ThreadTester.MAX_COUNTER_NUMBER)
  40:                     {
  41:                         _aStopWatch.Stop();
  42:break;
  43:                     }
  44:  
  45:this.IncreaseCounter();
  46:                 }
  47:             }
  48:         }
  49:     }

Program的Main函数中,根据用户的选择来决定执行哪个测试类。

   1:class Program
   2:     {
   3:staticvoid Main(string[] args)
   4:         {
   5:  
   6:string inputText = GetUserChoice();
   7:  
   8:while (!"4".Equals(inputText))
   9:             {
  10:                 ThreadTester tester = GreateThreadTesterByInputText(inputText);
  11:                 tester.Start();
  12:  
  13:while (true)
  14:                 {
  15:                     Console.WriteLine(GetStatusOfThreadTester(tester));
  16:if (!tester.IsTesterRunning())
  17:                     {
  18:break;
  19:                     }
  20:                     Thread.Sleep(100);
  21:                 }
  22:  
  23:                 inputText = GetUserChoice();
  24:             }
  25:  
  26:             Console.Write("Click enter to exit...");
  27:         }
  28:  
  29:privatestaticstring GetStatusOfThreadTester(ThreadTester tester)
  30:         {
  31:returnstring.Format("[耗时{0}ms] counter = {1}, {2}",
  32:                     tester.GetElapsedMillisecondsOfIncreaseCounter(), tester.GetCounter(),
  33:                     tester.IsTesterRunning() ? "running" : "stopped");
  34:         }
  35:  
  36:privatestatic ThreadTester GreateThreadTesterByInputText(string inputText)
  37:         {
  38:switch (inputText)
  39:             {
  40:case"1":
  41:returnnew SingleThreadTester();
  42:case"2":
  43:returnnew TwoThreadSwitchTester();
  44:default:
  45:returnnew MultiThreadTester(100);
  46:             }
  47:         }
  48:  
  49:privatestaticstring GetUserChoice()
  50:         {
  51:             Console.WriteLine(@"==Please select the option in the following list:==
  52: 1. SingleThreadTester
  53: 2. TwoThreadSwitchTester
  54: 3. MultiThreadTester
  55: 4. Exit");
  56:  
  57:string inputText = Console.ReadLine();
  58:  
  59:return inputText;
  60:         }
  61:     }

三个测试类,运行结果如下:

Single Thread:
[耗时407ms] counter = 100000001, stopped
[耗时453ms] counter = 100000001, stopped
[耗时412ms] counter = 100000001, stopped

Two Thread Switch:
[耗时161503ms] counter = 100000001, stopped
[耗时164508ms] counter = 100000001, stopped
[耗时164201ms] counter = 100000001, stopped

Multi Threads - 100 Threads:
[耗时3659ms] counter = 100000001, stopped
[耗时3950ms] counter = 100000001, stopped
[耗时3720ms] counter = 100000001, stopped

Multi Threads - 2 Threads:
[耗时3078ms] counter = 100000001, stopped
[耗时3160ms] counter = 100000001, stopped
[耗时3106ms] counter = 100000001, stopped

什么是线程上下文切换

上下文切换的精确定义可以参考: http://www.linfo.org/context_switch.html。多任务系统往往需要同时执行多道作业。作业数往往大于机器的CPU数,然而一颗CPU同时只能执行一项任务,为了让用户感觉这些任务正在同时进行,操作系统的设计者巧妙地利用了时间片轮转的方式,CPU给每个任务都服务一定的时间,然后把当前任务的状态保存下来,在加载下一任务的状态后,继续服务下一任务。任务的状态保存及再加载,这段过程就叫做上下文切换。时间片轮转的方式使多个任务在同一颗CPU上执行变成了可能,但同时也带来了保存现场和加载现场的直接消耗。(Note. 更精确地说, 上下文切换会带来直接和间接两种因素影响程序性能的消耗. 直接消耗包括: CPU寄存器需要保存和加载, 系统调度器的代码需要执行, TLB实例需要重新加载, CPU 的pipeline需要刷掉; 间接消耗指的是多核的cache之间得共享数据, 间接消耗对于程序的影响要看线程工作区操作数据的大小).

技术分享

根据上面上下文切换的定义,我们做出下面的假设:

  1. 之所以TwoThreadSwitchTester执行速度最慢,因为线程上下文切换的次数最多,时间主要消耗在上下文切换了,两个线程交替计数,每计数一次就要做一次线程切换。
  2. “Multi Threads - 100 Threads”比“Multi Threads - 2 Threads”开的线程数量要多,导致线程切换次数也比后者多,执行时间也比后者长。

由于Windows下没有像Linux下的vmstat这样的工具,这里我们使用Process Explorer看看程序执行的时候线程上线文切换的次数。

Single Thread:

技术分享

计数期间,线程总共切换了580-548=32次。(548是启动程序后,初始的数值)

Two Thread Switch:

技术分享

计数期间,线程总共切换了33673295-124=33673171次。(124是启动程序后,初始的数值)

Multi Threads - 100 Threads:

技术分享

计数期间,线程总共切换了846-329=517次。(329是启动程序后,初始的数值)

Multi Threads - 2 Threads:

技术分享

计数期间,线程总共切换了295-201=94次。(201是启动程序后,初始的数值)

从上面收集的数据来看,和我们的判断基本相符。

干活的其实是CPU,而不是线程

再想想原来学过的知识,之前一直以为线程多干活就快,简直是把学过的计算机原理都还给老师了。真正干活的不是线程,而是CPU。线程越多,干活不一定越快。

那么高并发的情况下什么时候适合单线程,什么时候适合多线程呢?

适合单线程的场景:单个线程的工作逻辑简单,而且速度非常快,比如从内存中读取某个值,或者从Hash表根据key获得某个value。Redis和Node.js这类程序都是单线程,适合单个线程简单快速的场景。

适合多线程的场景:单个线程的工作逻辑复杂,等待时间较长或者需要消耗大量系统运算资源,比如需要从多个远程服务获得数据并计算,或者图像处理。

例子程序:http://pan.baidu.com/s/1c05WrGO

参考:

  • Context Switch – Wikipedia
  • 多线程的代价
  • Threading in C#
  • 为什么我要用 Node.js? 案例逐一介绍
  • 知乎——redis是个单线程的程序,为什么会这么快呢?每秒10000?这个有点不解,具体是快在哪里呢?EPOLL?内存?多线程
  • 从Java视角理解系统结构(一)CPU上下文切换

如下是自己写的多线程验证代码:
1.Junit测试类
import java.io.IOException;
import java.io.InputStream;
import java.net.SocketException;
import java.util.ArrayList;
import org.apache.commons.net.ftp.FTPClient;
import org.junit.Test;
import com.Thread.MyThread;
public class MainTest {
 private int count = 10000;
 private int countTest = 10000;
  //用主线程遍历ArrayList(结论:如果循环中不sleep,速度最快,如果循环中sleep,则遍历速度比多线程慢)
 @Test
 public void test() throws InterruptedException {
  long startTime = System.currentTimeMillis();
  ArrayList<Integer>  testList = new ArrayList<Integer>();
  ArrayList<Integer>  testList1 = new ArrayList<Integer>();
  for(int i=0; i<count; i++){
   testList.add(i);
  }
  for(int j=0; j<countTest; j++){
   testList1.add(j);
  }
 
  System.out.println("testList.size():" + testList.size() + "   i=" + 0);
 
  for(int j=0; j<testList.size(); j++){
   Thread.sleep(2);
   System.out.println(Thread.currentThread().getName() + " :" + testList.get(j));
  }
 
  for(int jj=0; jj<testList1.size(); jj++){
   Thread.sleep(2);
   System.out.println(Thread.currentThread().getName() + " :" + testList.get(jj));
  }
 
 
  System.out.println("程序总共花费时间:" + (System.currentTimeMillis()-startTime) + "毫秒");
 }
 
//在主线程中启动一个子线程去遍历ArrayList(结论:在循环中如果不sleep,遍历速度仅次于主线程,如果循环中sleep,速度与主线程遍历差不多)
 @Test
 public void test0() {
  long startTime = System.currentTimeMillis();
  ArrayList<Integer>  testList = new ArrayList<Integer>();
  ArrayList<Integer>  testList1 = new ArrayList<Integer>();
  for(int j=0; j<countTest; j++){
   testList1.add(j);
  }
  for(int i=0; i<count; i++){
   testList.add(i);
  }
  System.out.println("testList.size():" + testList.size() + "   i=" + 0);
 
  Runnable run0 = new MyThread(testList,0, count);
  Thread t0 = new Thread(run0, "Thread-0");
  long startTime1 = System.currentTimeMillis();
  t0.start();
  System.out.println("线程启动时间:" + (System.currentTimeMillis() - startTime1));
  try {
   t0.join();
  } catch (InterruptedException e) {
   e.printStackTrace();
  }
  System.out.println("程序总共花费时间:" + (System.currentTimeMillis()-startTime) + "毫秒");
 }
  //在主线程中启动两个子线程去遍历ArrayList(结论:如果在循环中不sleep,速度最慢,如果在循环中sleep,则遍历速度最快)
 @Test
 public void test1() {
  long startTime = System.currentTimeMillis();
  ArrayList<Integer>  testList = new ArrayList<Integer>();
  ArrayList<Integer>  testList1 = new ArrayList<Integer>();
 
  for(int i=0; i<count; i++){
   testList.add(i);
  }
 
  for(int j=0; j<countTest; j++){
   testList1.add(j);
  }
  System.out.println("testList.size():" + testList.size() + "   i=" + 0);
 
  Runnable run1 = new MyThread(testList,0, count/2);
  Thread t1 = new Thread(run1, "Thread-1");
  t1.start();
 
  Runnable run2 = new MyThread(testList,(count/2+1), count);
  Thread t2 = new Thread(run2, "Thread-2");
  t2.start();
  try {
   t1.join();
   t2.join();
  } catch (InterruptedException e) {
   e.printStackTrace();
  }
  System.out.println("程序总共花费时间:" + (System.currentTimeMillis()-startTime) + "毫秒");
 }
  //用单线程从ftp上下载两个文件
 @Test
 public void FileUpload() {
  long startTime = System.currentTimeMillis();
  try {
   FTPClient ftp = new FTPClient();
   ftp.connect("192.168.173.156", 21);
   ftp.login("admin", "123456");
   InputStream in = ftp.retrieveFileStream("ax.java");
   byte[] buffer = new byte[1024];
   while((in.read(buffer))!=-1){
    //System.out.println(Arrays.toString(buffer));
   }
   in.close();
   
   FTPClient ftp1 = new FTPClient();
   ftp1.connect("192.168.173.156", 21);
   ftp1.login("admin", "123456");
   InputStream in1 = ftp1.retrieveFileStream("ay.java");
   byte[] buffer1 = new byte[1024];
   while((in1.read(buffer1))!=-1){
    //System.out.println(Arrays.toString(buffer));
   }
   in1.close();
 
   
  } catch (SocketException e) {
   // TODO Auto-generated catch block
   e.printStackTrace();
  } catch (IOException e) {
   // TODO Auto-generated catch block
   e.printStackTrace();
  }
 
  System.out.println("程序总共花费时间:" + (System.currentTimeMillis()-startTime) + "毫秒");
 }
  //用两个线程从ftp上下载两个文件(结论:是多线程下载速度比单线程下载速度快)
 @Test
 public void FileUpload1() {
  long startTime = System.currentTimeMillis();
 
 /* Runnable run1 = new MyThread("ax.java");
  Thread t1 = new Thread(run1, "Thread-1");
  t1.start();
 
  Runnable run2 = new MyThread("ay.java");
  Thread t2 = new Thread(run2, "Thread-2");
  t2.start();
 
  try {
   t1.join();
   t2.join();
  } catch (InterruptedException e) {
   e.printStackTrace();
  }
  System.out.println("程序总共花费时间:" + (System.currentTimeMillis()-startTime) + "毫秒");*/
 }
}

2、多线程实现类
package com.Thread;
import java.io.IOException;
import java.io.InputStream;
import java.net.SocketException;
import java.util.ArrayList;
import java.util.Arrays;
import org.apache.commons.net.ftp.FTPClient;
public class MyThread implements Runnable{
 private ArrayList<Integer> intList = new ArrayList<Integer>();
 private int startNum;
 private int endNum;
 private String filename;
 
 public MyThread(ArrayList<Integer> intList, int startNum, int endNum) {
  super();
  this.intList = intList;
  this.startNum = startNum;
  this.endNum = endNum;
 }
 
 @Override
 public void run() {
  System.out.println("线程"+Thread.currentThread().getName()+"开始启动……");
  System.out.println("intList.size():" + intList.size() + "   startNum=" + startNum + "    endNum=" + endNum);
  for(int m=startNum; m<endNum;m++){
   System.out.println(Thread.currentThread().getName() + " : " + intList.get(m));
   try {
    Thread.sleep(2);
   } catch (InterruptedException e) {
    // TODO Auto-generated catch block
    e.printStackTrace();
   }
  }
  System.out.println("线程"+Thread.currentThread().getName()+"执行结束……");
 
  /*try {
   FTPClient ftp = new FTPClient();
   ftp.connect("192.168.173.156", 21);
   ftp.login("admin", "123456");
   InputStream in = ftp.retrieveFileStream(filename);
   byte[] buffer = new byte[1024];
   while((in.read(buffer))!=-1){
    //System.out.println(Arrays.toString(buffer));
   }
   in.close();*/
 }
 
 /*public MyThread(String filename) {
  super();
  this.filename = filename;
 }*/
}


多线程为什么跑的比单线程还要慢的情况分析及验证

标签:多线程   性能   效率   编程   java   

原文地址:http://blog.csdn.net/ljj2312/article/details/44206925

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!