标签:
一、中断初始化
1、中断向量表IDT的初始化
void __init init_IRQ(void)
{
	int i;
#ifndef CONFIG_X86_VISWS_APIC
	init_ISA_irqs();
#else
	init_VISWS_APIC_irqs();
#endif
	/*
	 * Cover the whole vector space, no vector can escape
	 * us. (some of these will be overridden and become
	 * ‘special‘ SMP interrupts)
	 */
	for (i = 0; i < NR_IRQS; i++) {//NR_IRQS为224
		int vector = FIRST_EXTERNAL_VECTOR + i;//FIRST_EXTERNAL_VECTOR为0x20
		if (vector != SYSCALL_VECTOR)//SYSCALL_VECTOR为0x80 
			set_intr_gate(vector, interrupt[i]);
	}
        ......
}
    对从0x20到224的中断向量,设置中断处理程序,set_intr_gate如下:void set_intr_gate(unsigned int n, void *addr)
{
	_set_gate(idt_table+n,14,0,addr);
}    在IDT中设置了门描述符,如下图:
    Selector为_KERNEL_CS。P为1;DPL为00;DT为0;TYPE为14,中断门。Offset就是interrupt[i]的偏移。
那么interrupt[i]是什么函数呢?经过若干宏定义的展开,如下:
void (*interrupt[NR_IRQS])(void) = {
	IRQ0x00_interrupt,IRQx01_interrupt,.....IRQx0F_interrupt};    IRQ0x00_interrupt,经过若干宏定义的展开,如下:asmlinkage void IRQ0X00_interrupt(); __asm__( "\n" "IRQ0X00_interrupt: \n\t" "pushl $0x00 - 256 \n\t" "jmp common_interrupt");
在init_IRQ调用init_ISA_irqs,如下:
void __init init_ISA_irqs (void)
{
	int i;
	init_8259A(0);
	for (i = 0; i < NR_IRQS; i++) {//NR_IRQS为224
		irq_desc[i].status = IRQ_DISABLED;
		irq_desc[i].action = 0;
		irq_desc[i].depth = 1;
		if (i < 16) {
			/*
			 * 16 old-style INTA-cycle interrupts:
			 */
			irq_desc[i].handler = &i8259A_irq_type;//将开头16个中断请求队列的handler指针设置成指向数据结构
		} else {
			/*
			 * ‘high‘ PCI IRQs filled in on demand
			 */
			irq_desc[i].handler = &no_irq_type;
		}
	}
}    irq_dec[i]的成员变量action就是这个中断请求队列的头。i从0~15一共16个中断请求队列。其成员变量handler对该共用"中断通道"的控制,enable和disable用来开启和关断其所属通道,ack用于对中断控制器的响应,而end用于每次中断服务返回的前夕。    这些数据结构定义如下:
struct hw_interrupt_type {
	const char * typename;
	unsigned int (*startup)(unsigned int irq);
	void (*shutdown)(unsigned int irq);
	void (*enable)(unsigned int irq);
	void (*disable)(unsigned int irq);
	void (*ack)(unsigned int irq);
	void (*end)(unsigned int irq);
	void (*set_affinity)(unsigned int irq, unsigned long mask);
};
typedef struct hw_interrupt_type  hw_irq_controller;
/*
 * This is the "IRQ descriptor", which contains various information
 * about the irq, including what kind of hardware handling it has,
 * whether it is disabled etc etc.
 *
 * Pad this out to 32 bytes for cache and indexing reasons.
 */
typedef struct {
	unsigned int status;		/* IRQ status */
	hw_irq_controller *handler;
	struct irqaction *action;	/* IRQ action list */
	unsigned int depth;		/* nested irq disables */
	spinlock_t lock;
} ____cacheline_aligned irq_desc_t;
extern irq_desc_t irq_desc [NR_IRQS];static struct hw_interrupt_type i8259A_irq_type = {
	"XT-PIC",
	startup_8259A_irq,
	shutdown_8259A_irq,
	enable_8259A_irq,
	disable_8259A_irq,
	mask_and_ack_8259A,
	end_8259A_irq,
	NULL
};struct irqaction {
	void (*handler)(int, void *, struct pt_regs *);
	unsigned long flags;
	unsigned long mask;
	const char *name;
	void *dev_id;
	struct irqaction *next;
};void __init time_init(void)
{
	......
	setup_irq(0, &irq0);
        ......
}
    其中irq0,如下:static struct irqaction irq0  = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
    结合上面的struct irqaction去理解。
setup_irq,如下:
int setup_irq(unsigned int irq, struct irqaction * new)//irq为中断请求号
{
	int shared = 0;
	unsigned long flags;
	struct irqaction *old, **p;
	irq_desc_t *desc = irq_desc + irq;//找到对应的通道
	/*
	 * Some drivers like serial.c use request_irq() heavily,
	 * so we have to be careful not to interfere with a
	 * running system.
	 */
	if (new->flags & SA_SAMPLE_RANDOM) {
		/*
		 * This function might sleep, we want to call it first,
		 * outside of the atomic block.
		 * Yes, this might clear the entropy pool if the wrong
		 * driver is attempted to be loaded, without actually
		 * installing a new handler, but is this really a problem,
		 * only the sysadmin is able to do this.
		 */
		rand_initialize_irq(irq);
	}
	/*
	 * The following block of code has to be executed atomically
	 */
	spin_lock_irqsave(&desc->lock,flags);
	p = &desc->action;//找到通道对应的中断处理队列
	if ((old = *p) != NULL) {//如果中断请求队列中已经有元素了
		/* Can‘t share interrupts unless both agree to */
		if (!(old->flags & new->flags & SA_SHIRQ)) {//那么需要原元素和新元素的flags都为SA_SHIRQ,表示与其他中断源公用该中断请求通道
			spin_unlock_irqrestore(&desc->lock,flags);
			return -EBUSY;
		}
		/* add new interrupt at end of irq queue */
		do {
			p = &old->next;
			old = *p;
		} while (old);//链入对应的位置
		shared = 1;
	}
	*p = new;//如果中断请求队列没有元素,则直接把irq0链入中断请求队列
	if (!shared) {//第一个元素链入后
		desc->depth = 0;
		desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);//status为0
		desc->handler->startup(irq);
	}
	spin_unlock_irqrestore(&desc->lock,flags);
	register_irq_proc(irq);
	return 0;
}我们拿时钟中断,举例说明。假设已经发生了时钟中断。
1、执行中断处理函数之前
如果中断发生在用户态,则会形成如下图:
(1)、CPU从中断控制器取得中断向量,然后根据具体的中断向量(本例中为0x20),从中断向量表IDT中找到相应的表项,而该表项应该是一个中断门。
首先把用户态堆栈的SS,用户堆栈的ESP,EFLAGS,用户空间的CS,EIP存入到系统堆栈中(从TSS中获取)。
(2)、CPU根据中断门的设置到达了该通道的总服务程序的入口。
asmlinkage void IRQ0X00_interrupt(); __asm__( "\n" "IRQ0X00_interrupt: \n\t" "pushl $0x00 - 256 \n\t" "jmp common_interrupt");把中断号-256压入堆栈。
#define BUILD_COMMON_IRQ() asmlinkage void call_do_IRQ(void); __asm__( "\n" __ALIGN_STR"\n" "common_interrupt:\n\t" SAVE_ALL "pushl $ret_from_intr\n\t" SYMBOL_NAME_STR(call_do_IRQ)":\n\t" "jmp "SYMBOL_NAME_STR(do_IRQ));
#define SAVE_ALL "cld\n\t" "pushl %es\n\t" "pushl %ds\n\t" "pushl %eax\n\t" "pushl %ebp\n\t" "pushl %edi\n\t" "pushl %esi\n\t" "pushl %edx\n\t" "pushl %ecx\n\t" "pushl %ebx\n\t" "movl $" STR(__KERNEL_DS) ",%edx\n\t" "movl %edx,%ds\n\t" "movl %edx,%es\n\t"执行完成SAVE_ALL后,就形成了如上图一样的堆栈。此时cs已经是_KERNEL_CS了,ds和es为_KERNEL_DS。
然后把ret_from_intr也压入堆栈,并执行do_IRQ。
    2、执行中断处理函数
asmlinkage unsigned int do_IRQ(struct pt_regs regs)//就是上面堆栈中的内容
{	
	/* 
	 * We ack quickly, we don‘t want the irq controller
	 * thinking we‘re snobs just because some other CPU has
	 * disabled global interrupts (we have already done the
	 * INT_ACK cycles, it‘s too late to try to pretend to the
	 * controller that we aren‘t taking the interrupt).
	 *
	 * 0 return value means that this irq is already being
	 * handled by some other CPU. (or is disabled)
	 */
	int irq = regs.orig_eax & 0xff; //取得了中断号,为0
	int cpu = smp_processor_id();
	irq_desc_t *desc = irq_desc + irq;//找到对应的通道
	struct irqaction * action;
	unsigned int status;
	kstat.irqs[cpu][irq]++;
	spin_lock(&desc->lock);
	desc->handler->ack(irq);//我已经处理了
	/*
	   REPLAY is when Linux resends an IRQ that was dropped earlier
	   WAITING is used by probe to mark irqs that are being tested
	   */
	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
	status |= IRQ_PENDING;//status为IRQ_PENDING
	/*
	 * If the IRQ is disabled for whatever reason, we cannot
	 * use the action we have.
	 */
	action = NULL;
	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {//status为IRQ_PENDING,执行下面代码
		action = desc->action;//找到通道对应的中断处理队列
		status &= ~IRQ_PENDING; //status为0,把IRQ_PENDING位清零了
		status |= IRQ_INPROGRESS; // status为IRQ_INPROCESS
	}
	desc->status = status;//desc->status为IRQ_INPROCESS
	/*
	 * If there is no IRQ handler or it was disabled, exit early.
	   Since we set PENDING, if another processor is handling
	   a different instance of this same irq, the other processor
	   will take care of it.
	 */
	if (!action)//如果action为NULL,直接退出
		goto out;
	/*
	 * Edge triggered interrupts need to remember
	 * pending events.
	 * This applies to any hw interrupts that allow a second
	 * instance of the same irq to arrive while we are in do_IRQ
	 * or in the handler. But the code here only handles the _second_
	 * instance of the irq, not the third or fourth. So it is mostly
	 * useful for irq hardware that does not mask cleanly in an
	 * SMP environment.
	 */
	for (;;) {
		spin_unlock(&desc->lock);
		handle_IRQ_event(irq, ®s, action);//action是中断请求队列的头指针,irq为0,
		spin_lock(&desc->lock);
		
		if (!(desc->status & IRQ_PENDING))
			break;
		desc->status &= ~IRQ_PENDING;
	}
	desc->status &= ~IRQ_INPROGRESS;//处理完,把IRQ_INPROCESS位置0
out:
	/*
	 * The ->end() handler has to deal with interrupts which got
	 * disabled while the handler was running.
	 */
	desc->handler->end(irq);//开中断
	spin_unlock(&desc->lock);
	if (softirq_active(cpu) & softirq_mask(cpu))//处理中断下半部
		do_softirq();
	return 1;
}struct pt_regs {
	long ebx;
	long ecx;
	long edx;
	long esi;
	long edi;
	long ebp;
	long eax;
	int  xds;
	int  xes;
	long orig_eax;
	long eip;
	int  xcs;
	long eflags;
	long esp;
	int  xss;
};handle_IRQ_event,代码如下:
int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
{
	int status;
	int cpu = smp_processor_id();
	irq_enter(cpu, irq);
	status = 1;	/* Force the "do bottom halves" bit */
	if (!(action->flags & SA_INTERRUPT))//如果这个标志位置0,那么要在开中断的情况下执行
		__sti();//开中断
	do {
		status |= action->flags;
		action->handler(irq, action->dev_id, regs);//依次执行中断请求队列上的中断处理函数
		action = action->next;
	} while (action);
	if (status & SA_SAMPLE_RANDOM)
		add_interrupt_randomness(irq);
	__cli();//关中断	
	irq_exit(cpu, irq);
	return status;
}    在本例中,中断处理函数为timer_interrupt(action->handler)。我们看到大部分中断处理函数都是在关中断下执行的。但是action->flags的SA_INTERRUPT置0,是在开中断的情况下执行的。如果执行中断处理函数时,处于开中断的情况,而且此时恰好是同一通道的中断,也就是irq中断号(假设都为0)一样。由于上一次中断还没有退出,此时desc->status为IRQ_INPROGRESS。我们看这段代码:
    	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
	status |= IRQ_PENDING;//此时status为IRQ_PENDING| IRQ_INPROGRESS
	/*
	 * If the IRQ is disabled for whatever reason, we cannot
	 * use the action we have.
	 */
	action = NULL;
	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {//不执行下面程序
		action = desc->action;
		status &= ~IRQ_PENDING; 
		status |= IRQ_INPROGRESS; 
	}
	desc->status = status;//desc->status为IRQ_PENDING| IRQ_INPROGRESS
	if (!action)//action为NULL,退出
		goto out;        for (;;) {
		spin_unlock(&desc->lock);
		handle_IRQ_event(irq, ®s, action);
		spin_lock(&desc->lock);
		
		if (!(desc->status & IRQ_PENDING))//由于新的中断执行时desc->status为IRQ_PENDING| IRQ_INPROGRESS,所以继续执行for循环
			break;
		desc->status &= ~IRQ_PENDING;//desc->status为IRQ_INPROGRESS
	}这样就把发生在同一通道上的中断嵌套化解成为一个循环了。
我们继续分析中断处理函数,timer_interrupt,代码如下:
static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	int count;
	......
 
	do_timer_interrupt(irq, NULL, regs);
	write_unlock(&xtime_lock);
}static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
        ......
	do_timer(regs);
        ......
}void do_timer(struct pt_regs *regs)
{
	(*(unsigned long *)&jiffies)++;
#ifndef CONFIG_SMP
	/* SMP process accounting uses the local APIC timer */
	update_process_times(user_mode(regs));//与进程调度有关
#endif
	mark_bh(TIMER_BH);//中断下半部相关
	if (TQ_ACTIVE(tq_timer))
		mark_bh(TQUEUE_BH);
}执行完中断处理函数之后,返回do_IRQ,会检查是否有中断下半部需要执行,如果需要执行,则调用do_softirq,下半部是在开中断的情况下开始执行的。
do_IRQ执行完毕后,会调用ret,返回到ret_from_intr执行,代码如下:
ENTRY(ret_from_intr) GET_CURRENT(%ebx) //将指向当前进程的task_struct结构的指针置入寄存器EBX movl EFLAGS(%esp),%eax # mix EFLAGS and CS movb CS(%esp),%al testl $(VM_MASK | 3),%eax //看发生中断时是否处于用户态 jne ret_with_reschedule //如果处于用户态,那么执行ret_with_reschedule jmp restore_all
ret_with_reschedule: cmpl $0,need_resched(%ebx)//查看该task_struct结构中位移为need_resched处的内容 jne reschedule cmpl $0,sigpending(%ebx)//查看该task_struct结构中位移为sigpending处的内容 jne signal_return restore_all: RESTORE_ALL
signal_return: sti # we can get here from an interrupt handler testl $(VM_MASK),EFLAGS(%esp) movl %esp,%eax jne v86_signal_return xorl %edx,%edx call SYMBOL_NAME(do_signal)//处理信号 jmp restore_all
restore_all: RESTORE_ALL
#define RESTORE_ALL \ //返回中断前 popl %ebx; popl %ecx; popl %edx; popl %esi; popl %edi; popl %ebp; popl %eax; 1: popl %ds; 2: popl %es; addl $4,%esp; \ //跳过orig_eax 3: iret;
state = 0 flags = 4 sigpending = 8 addr_limit = 12 exec_domain = 16 need_resched = 20 tsk_ptrace = 24 processor = 52
标签:
原文地址:http://blog.csdn.net/jltxgcy/article/details/44217205