标签:
合理利用线程池能够带来三个好处。第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。第二:提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。
我们可以通过ThreadPoolExecutor来创建一个线程池。
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, milliseconds,runnableTaskQueue, threadFactory,handler);
创建一个线程池需要输入几个参数: corePoolSize(线程池的基本大小)
:当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。 runnableTaskQueue(任务队列)
:用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。
(1)ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
(2)LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
(3)SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
(4)PriorityBlockingQueue:一个具有优先级得无限阻塞队列。 maximumPoolSize(线程池最大大小)
:线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。 ThreadFactory
:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,Debug和定位问题时非常又帮助。 RejectedExecutionHandler(饱和策略)
:当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。以下是JDK1.5提供的四种策略。
(1)AbortPolicy:直接抛出异常。
(2)CallerRunsPolicy:只用调用者所在线程来运行任务。
(3)DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
(4)DiscardPolicy:不处理,丢弃掉。
(5)当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。 keepAliveTime(线程活动保持时间)
:线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。 TimeUnit(线程活动保持时间的单位)
:可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。
我们可以使用execute提交的任务,但是execute方法没有返回值,所以无法判断任务知否被线程池执行成功。通过以下代码可知execute方法输入的任务是一个Runnable类的实例。
threadsPool.execute(new Runnable() {
@Override
public void run() {
// TODO Auto-generated method stub
}
});
我们也可以使用submit 方法来提交任务,它会返回一个future,那么我们可以通过这个future来判断任务是否执行成功,通过future的get方法来获取返回值,get方法会阻塞住直到任务完成,而使用get(long timeout, TimeUnit unit)方法则会阻塞一段时间后立即返回,这时有可能任务没有执行完。
try {
Object s = future.get();
} catch (InterruptedException e) {
// 处理中断异常
} catch (ExecutionException e) {
// 处理无法执行任务异常
} finally {
// 关闭线程池
executor.shutdown();
}
我们可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池,但是它们的实现原理不同,shutdown的原理是只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。shutdownNow的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。shutdownNow会首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表。
只要调用了这两个关闭方法的其中一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于我们应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow。
流程分析:线程池的主要工作流程如下图:
从上图我们可以看出,当提交一个新任务到线程池时,线程池的处理流程如下:
(1)首先线程池判断基本线程池是否已满?没满,创建一个工作线程来执行任务。满了,则进入下个流程。
(2)其次线程池判断工作队列是否已满?没满,则将新提交的任务存储在工作队列里。满了,则进入下个流程。
(3)最后线程池判断整个线程池是否已满?没满,则创建一个新的工作线程来执行任务,满了,则交给饱和策略来处理这个任务。
上面的流程分析让我们很直观的了解的线程池的工作原理,让我们再通过源代码来看看是如何实现的。线程池执行任务的方法如下:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
//如果线程数小于基本线程数,则创建线程并执行当前任务
if (poolSize >= corePoolSize || !addIfUnderCorePoolSize(command)) {
//如线程数大于等于基本线程数或线程创建失败,则将当前任务放到工作队列中。
if (runState == RUNNING && workQueue.offer(command)) {
if (runState != RUNNING || poolSize == 0)
ensureQueuedTaskHandled(command);
}
//如果线程池不处于运行中或任务无法放入队列,并且当前线程数量小于最大允许的线程数量,则创建一个线程执行任务。
else if (!addIfUnderMaximumPoolSize(command))
//抛出RejectedExecutionException异常
reject(command); // is shutdown or saturated
}
}
线程池创建线程时,会将线程封装成工作线程Worker,Worker在执行完任务后,还会无限循环获取工作队列里的任务来执行。我们可以从Worker的run方法里看到这点:
public void run() {
try {
Runnable task = firstTask;
firstTask = null;
while (task != null || (task = getTask()) != null) {
runTask(task);
task = null;
}
} finally {
workerDone(this);
}
}
标签:
原文地址:http://my.oschina.net/xianggao/blog/388502