码迷,mamicode.com
首页 > 编程语言 > 详细

算法总结——Floyed

时间:2015-03-20 20:19:42      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:

Floyed:

复杂度:O(n^3)

用途:求一条路走完所有的地方的的最小值,很简单,就三个for,一般写floyed不谢bellman_ford~~~

适用条件:遍历所有的点,适合于稠密图,floyed与bellman_ford算法之间的区别就是floyed计算了从每一点开始的值,最后只要选取就行,方便写,但是复杂度高了

原理:利用邻接矩阵判断,而bellman_ford是利用一个数组d进行判断(其实应该可以相互转换把- -||)

步骤:1.把所有的边赋值无穷大,能通过的赋值 2. 三个for循环,k,i,j,  k表示从i->j可以走i->k->j,不断取小值 3.选取出发点和结束点,直接输出就是最短路

模板:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int  MAX = 300;
const int inf = 0x3f3f3f3f;
int d[MAX],map[MAX][MAX];
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n ; i++)
        for(int j = 1; j <= n; j++)
          map[i][j] = inf;
    int x, y, t;
    for(int i = 1;i <=m;i++){
        scanf("%d%d%d",&x,&y,&t);
        map[x][y] = t;
    }
    for(int k = 1; k <= n ;k++){
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n;j++){
                    if(i!=k&&i!=j)
                map[i][j] = min(map[i][j], map[i][k]+map[k][j]);
            }
        }
    }
    printf("%d",map[1][2]);
    return 0;
}

 

算法总结——Floyed

标签:

原文地址:http://www.cnblogs.com/zero-begin/p/4354435.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!