标签:
Linux内核中进程的强制性调度,也就是非自愿的、被动的、剥夺式的调度,主要是由时间引起的。前面讲过这种调度发生在中断,异常,系统调用从系统空间返回用户空间的前夕,也就是在ret_with_reschedule可以看出,此时是否真的调用schedule(),最终还要取决于当前进程task_struct结构中的need_resched是否为1(非0),因此,问题就结为当前进程的need_resched是在什么情况下才置成1的。主要有如下几种情况:
1、在时钟中断的服务程序中,发现当前进程(连续)运行的时间过长。
2、在唤醒一个睡眠中的进程是,发现被唤醒的进程比当前进程更有资格运行。
3、一个进程通过系统调用改变调度政策或礼让。这种情况实际上应该被视为主动的、自愿的调度,因此这样的系统调用会引起立即调度。
对第一种情况,在Linux内核源代码情景分析-中断上半部一文中,do_timer中断服务程序,调用了update_process_times,代码如下:
void update_process_times(int user_tick)
{
struct task_struct *p = current;
int cpu = smp_processor_id(), system = user_tick ^ 1;
update_one_process(p, user_tick, system, cpu);
if (p->pid) {
if (--p->counter <= 0) {
p->counter = 0;
p->need_resched = 1;//强制调度
}
if (p->nice > 0)
kstat.per_cpu_nice[cpu] += user_tick;
else
kstat.per_cpu_user[cpu] += user_tick;
kstat.per_cpu_system[cpu] += system;
} else if (local_bh_count(cpu) || local_irq_count(cpu) > 1)
kstat.per_cpu_system[cpu] += system;
} 如果此时在用户态发生中断,进入内核态,p->counter减为0,那么p->need_resched就置为1,中断返回时就会强制调度。如果此时发生系统调用,进入内核态,再发生中断,p->counter减为0,那么p->need_resched就置为1,中断返回后,然后系统调用返回时就会强制调度。
如果此时在用户态发生异常,进入内核态,再发生中断,p->counter减为0,那么p->need_resched就置为1,中断返回后,然后异常返回时就会强制调度。
对第二种情况,唤醒一个进程时,代码如下:
inline void wake_up_process(struct task_struct * p)
{
unsigned long flags;
/*
* We want the common case fall through straight, thus the goto.
*/
spin_lock_irqsave(&runqueue_lock, flags);
p->state = TASK_RUNNING;//进程的状态设置为TASK_RUNNING
if (task_on_runqueue(p))
goto out;
add_to_runqueue(p);//将进程挂入runqueue
reschedule_idle(p);
out:
spin_unlock_irqrestore(&runqueue_lock, flags);
}static void reschedule_idle(struct task_struct * p)
{
......
int this_cpu = smp_processor_id();
struct task_struct *tsk;
tsk = cpu_curr(this_cpu);//获取当前进程的task_struct数据结构
if (preemption_goodness(tsk, p, this_cpu) > 1)//比较当前进程和被唤醒的进程的综合权值
tsk->need_resched = 1;//如果被唤醒的进程的综合权值比当前进程的大,那么强制调度
}static inline int preemption_goodness(struct task_struct * prev, struct task_struct * p, int cpu)
{
return goodness(p, cpu, prev->active_mm) - goodness(prev, cpu, prev->active_mm);
} 如果发生了系统调用,进入内核态,发生上面的过程,那么在系统调用返回时会强制调度。如果在用户态发生了异常,进入内核态,发生上面的过程,那么在异常返回时会强制调度。
如果在用户态发生了中断,进入内核态,不能调用wake_up_process。
对于第三种情况,实际上应被视为自愿的让出。但是,从内核代码的形式上看,也是通过相同的办法,将当前进程的need_resched标志置为1,使得在进程返回用户空间前夕发生调度,所以也放在这一节。此类系统调用有两个,一个是sched_setscheduler(),另一个是sched_yield()。
系统调用sched_setscheduler()的作用是改变进程的调度政策。用户登录到系统后,第一个进程的适用调度政策为SCHED_OTHER,也就是默认为无实时要求的交互式应用。在fork()创建新进程时则将此进程适用的调度政策遗传给了子进程。但是,用户可以通过系统调用sched_setscheduler()改变其适用调度政策。
sched_setscheduler,内核态对应的代码如下:
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
return setscheduler(pid, policy, param);
}
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param *param)
{
return setscheduler(pid, -1, param);
}static int setscheduler(pid_t pid, int policy,
struct sched_param *param)
{
struct sched_param lp;
struct task_struct *p;
int retval;
retval = -EINVAL;
if (!param || pid < 0)
goto out_nounlock;
retval = -EFAULT;
if (copy_from_user(&lp, param, sizeof(struct sched_param)))//从用户空间把sched_param结构拷贝到lp
goto out_nounlock;
/*
* We play safe to avoid deadlocks.
*/
read_lock_irq(&tasklist_lock);
spin_lock(&runqueue_lock);
p = find_process_by_pid(pid);//通过pid找到task_struct
retval = -ESRCH;
if (!p)
goto out_unlock;
if (policy < 0)//policy为-1
policy = p->policy;//维持原来的政策
else {
retval = -EINVAL;
if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_OTHER)//必须是这三种政策之一
goto out_unlock;
}
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are 1..99, valid
* priority for SCHED_OTHER is 0.
*/
retval = -EINVAL;
if (lp.sched_priority < 0 || lp.sched_priority > 99)
goto out_unlock;
if ((policy == SCHED_OTHER) != (lp.sched_priority == 0))//如果政策是SCHED_OTHER,sched_priority必须是0
goto out_unlock;
retval = -EPERM;
if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
if ((current->euid != p->euid) && (current->euid != p->uid) &&
!capable(CAP_SYS_NICE))
goto out_unlock;
retval = 0;
p->policy = policy;
p->rt_priority = lp.sched_priority;
if (task_on_runqueue(p))
move_first_runqueue(p);//从可执行进程队列的当前位置移到队列的前部,使其在调度时处于较为有利的地位
current->need_resched = 1;//强制调度
out_unlock:
spin_unlock(&runqueue_lock);
read_unlock_irq(&tasklist_lock);
out_nounlock:
return retval;
}asmlinkage long sys_sched_yield(void)
{
/*
* Trick. sched_yield() first counts the number of truly
* ‘pending‘ runnable processes, then returns if it‘s
* only the current processes. (This test does not have
* to be atomic.) In threaded applications this optimization
* gets triggered quite often.
*/
int nr_pending = nr_running;
#if CONFIG_SMP
int i;
// Substract non-idle processes running on other CPUs.
for (i = 0; i < smp_num_cpus; i++)
if (aligned_data[i].schedule_data.curr != idle_task(i))
nr_pending--;
#else
// on UP this process is on the runqueue as well
nr_pending--;
#endif
if (nr_pending) {//正在等待的运行的进程数
/*
* This process can only be rescheduled by us,
* so this is safe without any locking.
*/
if (current->policy == SCHED_OTHER)
current->policy |= SCHED_YIELD;//SCHED_YIELD标志位置1,在_schedule_tail清0
current->need_resched = 1;//强制调度
}
return 0;
}标签:
原文地址:http://blog.csdn.net/jltxgcy/article/details/44516901